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I. Background, motivation, and a first look at beam data 
 
 During AGS Polarized Proton acceleration periods, one output from the AGS 
Ggamma Meter, namely the energy (or Ggamma) calculated from the magnetic field in 
the AGS main magnets and the beam radius - both measured at a particular instant, is 
used to figure out the times in the AGS magnet acceleration cycle when the beam passes 
through a particular set of depolarizing resonances. The resonance condition set occur 
whenever a particle’s Ggamma (or energy *(G/m), with G and m constants) becomes 
nearly equal to n*Qx (i.e. any integer multiplied by  the horizontal betatron tune).  If we 
know Ggamma(t) we can figure out when in time each resonance is crossed. Because of 
this deliverable, this machinery is referred to as the “Ggamma Meter” rather than the 
AGS energy meter - just words.  
 
 For the AGS Tune Jump system, the resonance crossing times must be known 
with excellent accuracy. Pulsing the quadrupoles of the Tune Jump system will speed the 
beam across the resonance condition provided the timing is close enough. What are the 
Jump Quad system parameters? Consider a single particle accelerating in the AGS, a 
horizontal tune jump of 0.04, a quad-jumping time interval of 100 usec, and a beam 
acceleration rate of 50 units of Ggamma in 500 ms, (or 0.025 units of Ggamma in 
250usec). For these numbers – which are close to the numbers for the existing system – it 
follows that the timing of the tune jumping must occur within +/- 250 usec of the perfect 
jump time for this particle or else the particle will cross the resonance with no beneficial 
speeding up. The beam energy (in units of Ggamma) changes by 0.025 in 250 usec. If 
our energy at a given time prediction is off by 0.025 (Ggamma units) the Tune Jump 
system will not improve the polarization. How much better than this the timing needs to 
be for optimal correction depends on the beam energy and the tune spread. Adding a tune 
spread to the beam reduces the allowed window for minimal depolarization loss but 
widens the window that provides some benefit from the jump. 
  
 We choose to control when the tune jumping occurs via real time – measured 
from AGS T0. The resonance crossing times are learned from a series of measurements 
of (beam energy and horizontal tune) taken at approximately the times when the 
resonances are crossed. This beam energy or Ggamma or here GgammaBr - the 
nomenclature gets picky - comes (via the Ggamma Meter) from measuring the AGS 
magnetic field using the gauss meter and measuring the beam momentum offset using the 
r, the radial average from the beam position measuring system. The starting field for the 
gauss clock (gauss at T0) and the calibration for the gauss clock (GCcal = gauss clock 
counts/gauss) need to be determined. This is accomplished by requiring these estimates 
of beam energy using magnetic field and radius – GgammaBr - equal a second very 
different set of energy estimates. This second set uses the beam frequency (F) and beam 
path length (meaning the design path length 2πR0 but with R0 experimentally shifted by 
the same r mentioned above) and is designated GgammaFr. In the short-hand used here, 
the Ggamma Meter provides the two energy estimates at each time – GgammaBr and 
GgammaFr. The calibration parameters are chosen to made the two sets as equal as 
possible throughout the acceleration cycle; adjusting B0, GCcal, and R0. 
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  The Ggamma Meter takes as inputs a set of measurements of frequency 
(F(t)), radius (r(t)), and gauss clock counts (GCC(t)). The frequency is a measure of the 
bunch or rf frequency. The AGS orbit display application calculates r(t) as the average of 
the measured positions at all the horizontal pickups. The pick up locations are dead 
reckoned to give r = 0 if the beam is at the design radius, R0. The beam path length is 
then taken to be 2π (R0+r) and the beam velocity and energy follow from this path length 
and the revolution frequency (F/h) with h the rf cavity acceleration harmonic. This gives 
GgammaFr(t). The other energy (GgammaBr) assumes the field when the gauss clock 
starts counting is known. The change in field to time t is given by the measured 
accumulated gauss clock counts multiplied by the gauss clock calibration (gauss/GCC).  
In order to deal with experimental data, this calibration factor gets an added ad hoc 
complication, namely a correction dependent on the rate of change the counting rate. The 
Ggamma meter takes GCC(t) and together with the past history for this cycle calculates 
B(t). From this the momentum on the central radius can be calculated (given the AGS 
radius of curvature), and with r a correction applied to learn the momentum shift to the 
measured radius.  
 
 To summarize and review: the Ggamma Meter evaluates two functions of time at 
whatever times we choose to provide the input measurements.  
 
 The Ggamma Meter calculated GgammaFr(t) from F(t), r(t) and the constant R0. 
 
Function #1: GgammaFr = G*γ, γ = 1/√(1-β2), β = (1/c)*(Frev*2π(R0+r) 
 
 The Ggamma Meter calculates GgammaBr(t) from GCC(t), r(t) and constants 
GCcal, the basic counts per gauss, B0, the starting field,  and – because we will introduce 
it later on - an additional correction with a proportionality coefficient “Bdd”, to allow for 
a dependence on changes in the slope dB/dt. The same measured r is here used to correct 
the momentum calculated from B (and the radius of curvature on the central orbit) to 
account for the beam not being on the central orbit. It is assumed that a beam with r = 0 is 
on the design orbit with the design rigidity. 
  
Function #2: GgammaBr = G*γ,  γ = E/M = (√ (P2+M2))/M,  P = Po(1+(r/R0)*γtr

2), Po = 
B*ρ*Q*c) ,  B = (B0+GCC*GCcal) and GCcal can be given a dependence on d/dt(dB/dt) 
if the coefficient Bdd is not zero. 
 
 There are more constants in these equations than specifically called out in the 
above text, (M, the proton mass; Q, the proton charge; ρ, the radius of curvature on the 
design orbit;  γtr, transition gamma) but these others are either well known or not 
critically sensitive players. 
  
The main subject for this note is just understanding how best to learn these calibration 
coefficients. (The basic arguments – the lack of degeneracy between GgammaFr and 
GgammaBr, the fitting approach - were made rather crisply by Dr. Howard Weisberg in 
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AGS tech note #145 back in 1978. He was measuring the AGS extraction energy for the 
slow-extracted AGS beam despite working at a main magnet excitation current that 
pushed the magnet iron well into saturation and produced extraction momenta  one or two 
percent below an unsaturated machine). One measures GgammaBr(i) and GgammaFr(i) 
at n times during the cycle, (i = 1,n). One takes the differences between these pairs of 
measurements, delta(i) = GgammaBr(i) - GgammaFr(i); weights this deltas by the errors 
in the differences, and forms the sum of the squares of these weighted differences over 
the n measurements. The “best” calibration numbers are then obtained by allowing these 
calibration numbers to vary so as to minimize this sum, usually using a nonlinear least-
squares fitting algorithm. Because of the energy range covered in the AGS – from a beta 
of 0.9 to beta of greater than 0.99 the two Ggamma functions are not degenerate. The 
fitting can work.  
  
 We next see how this goes for one rather good set of data (23May13, 231 
measurements). The difference GgammaFr-GgammaBr is plotted vs time in the cycle in 
figure 1. For the left plot initial calibration values are “book” – approximately design 
manual values – then a minimizing is carried out as described above. (The Bdd term in 
GgammaBr mentioned above is here fixed at zero.) One box of the vertical scale is 0.05 
units in Ggamma. We learned above that we need to know the Ggamma to better than 
half a box throughout the acceleration cycle. We are minimizing the differences between 
pairs of points, but we need to get these two functions to overlay throughout the 
acceleration cycle. If the two functions GgammaFr and GgammaBr have different shapes 
no matter what we do to our coefficients then we can not get to a perfect match. We need 
to look beyond just the minimization of the least-squares sum and try to figure out how to 
properly modify the two functions GgammaFr(t), and GgammaBr(t) to gain the freedom 
to get to the same function of time which hopefully is also Ggamma(t). The other two 
plots below show how the difference reacts if R0 is changed by +/- 0.8mm. These 
changes increase the chisq/deg of freedom from 1.7 to 3.   
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Figure 1: GgammaFr(t)-GgammaBr(t) for a set of AGS data and for (left) a simple fitting, 
and then center and right: shifting R0 by +/- 0.8 mm from the original solution. The 
horizontal scale is time in the cycle, spanning the full acceleration period. The vertical 
scale is the difference in Ggamma using the two methods of calculation. 
 
 Clearly from figure 1, just changing R0 does not get us to a better solution, well it 
shouldn’t. But one plausible conclusion that does follow from the rather violent swinging 
of the difference curve late is that we probably know R0 late in the cycle to better than 
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1mm. Then again from the plots, now looking early in the cycle, it is clear that this rather 
crude radial information allows us to accurately predict Ggamma just from F and r and 
hence to provide the GgammaBr machinery an injection starting value. This will be true 
provided we have made measurements early in the cycle, the gauss clock starts counting 
at injection, and R0 is really a constant throughout the cycle. A 1 mm change (or 
uncertainty) in R0 has an insignificant effect on the plotted delta early in the cycle and, 
since GgammaBr essentially does not depend on R0, therefore has an insignificant effect 
on GgammaFr. The claim then is that under the right measurement conditions we can 
read off one of the GgammaBr calibration numbers namely B0 from GgammaFr. There is 
some more discussion of this topic in the appendix I, looking at standard deviations in the 
measured quantities and among the Action Items.  
         
Two asides: 
  
Aside 1: 
 The calibrations being used by the Ggamma meter when the jump quad timing 
runs are taken (i.e. measuring the horizontal tune and GgammaBr at two times close to 
each resonance crossing and interpolating to better find the crossing time) determine the 
quality of those times. If the calibrations that are active when making  the jump quad 
timing set are flawed, the timing set will be flawed. If indeed the calibrations are proper 
and the jump time set is good but a week later the beam energy time dependence changes 
(an AGS magnetic field or radius change) or the horizontal tune time dependences 
changes, then the crossing times will no longer be correct. On the other hand, if a week 
later the gauss clock calibration parameters or the beam position monitors average 
position changes, that won’t affect the jump timing at all.   
 
Aside 2: 
  In fact the produced GgammaBr(t) – and not GgammaFr(t) - is  used in working 
out jump quad timings because the gauss clock shows little cycle-to-cycle variation while 
the frequency required by the GgammaFr(t) has the expected significant statistical 
fluctuations given the measurement windows. For the Jump Quad timing determination 
setup the windows between measurements are necessarily small – squeezing in around 
each crossing time and so the frequency precision for a single measurement is poor. The 
gauss clock has no problem with close timings. 
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 II. Model description and a suggested parameter optimization strategy  
 
 To better understand the challenges to learning the calibration constants, we turn 
to a simple model for the AGS acceleration cycle. The model assumes a simple main 
magnet field time dependence (figure 2) – flat injection porch, constant ramping section, 
and flat extraction porch. We take this B(t) and translate it into a beam momentum using 
the “book” value for the AGS main magnets radius of curvature. We are assuming our 
beam is on the central orbit. This gives us the “true” beam energy or Ggamma vs time. 
We can also use the B(t) to generate a Gauss clock count (GCC) vs time. To find the 
GCC we need to set the Gauss Clock calibration – counts per Gauss, which we take as 
19.5, close to the measured value.  
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Figure 2: AGS Main magnet time dependence used in this model. The parameters are 
chosen to mimic in a simple way the actual behavior of the AGS for polarized 
acceleration. 
  
 We can turn the calculated momentum vs time into a revolution frequency vs time. 
Calculating this frequency requires we know the path length, which is defined as 2*π*Ro 
and we pick Ro to be about what is in the “book” and what is measured, 128453mm. 
Again we are on the design central orbit. 
 
 Now we can take the tables for GCC(t) and F(t) and with some r (which is the 
deviation of the beam from the central orbit and starts as zero here) we mimic the 
Ggamma meter application and calculate GgammaBr and GgammaFr.  If we plot these 
two Ggamma’s vs time they are “by construction” identical. If we plot the difference 
between them or if we plot the difference of either from the “true” Ggamma we get zero. 
 
 Next we introduce an error either into the GCC calibration or into the radius such 
that the reported Ggamma is wrong – the Ggamma error in this example is here chosen to 
be 0.04. (0.025 was our figure of merit back in section I.) We take this amount of 
Ggamma error because the errors needed either in the GCcal or in the radius to cause this 
amount of error in Ggamma are physically realistic. Figure 3 gives the results. To get 
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a .04 mistake from GgammaBr we need the GCC calibration to be wrong by .02. Our 
model 19.5 GCC/Gauss becomes 19.48 here. The radius needs to be wrong by 0.2mm. 
Our model 128453mm becomes 128453.2mm. Though the errors at flat top are equal (by 
construction) the behaviors during the acceleration cycle are quite different with 
GgammaBr showing a linear error and GgammaFr curving. This difference in behavior is 
the only reason we can hope to use this comparison to find the correct values for both 
factor sets. 
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Figure 3: The effects in the calculated Ggammas when errors are introduced into the 
input parameters. 
  
 In an experimental or “beam-based” sense we cannot actually measure these 
absolute differences. What we can measure is the difference (GgammaFr – GgammaBr) 
reported by the Ggamma meter. It is then quite possible for example to introduce the 
magnitude of error just mentioned into the gauss clock through Gcal  and  a 
compensating-at-full-energy error into GgammaFr through R0 to restore perfect 
agreement in this difference late in the cycle. In this case both determinations of Ggamma 
are wrong throughout the cycle and worst at full energy. The measurable maximum 
difference between the two energy evaluations during the cycle is unfortunately rather 
small compared with the true errors, only 0.015 rather than the 0.04 errors at full energy. 
This is a weakness of the technique if points early and late are much more heavily 
weighted than points along the ramp. 
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Ggam(B,r), Ggam(F,r), and difference
here "compensating" errors result Ggamma prediction off by .04 at full energy 

but "see" only .013 disagreement
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Figure 4: The experimentally available difference between GgammaBr and GgammaFr 
for the case under discussion 
 
 If our “for calibration” set of times samples well the entire cycle and if the 
systems behaves according to the model then conventional least-squares fitting should 
work just fine. We saw above that the result for a real set was less than acceptable so this 
model is surely not complete  Nevertheless gaining some intuition from the model is 
useful. In particular we see that an error in GCcal will result in a linearly growing 
difference error with energy while an error in R0 will result in a difference that grows 
quite nonlinearly with energy. Simply plotting against energy rather than time should 
give a more useful graphic for manual fitting. And getting the difference down to very 
small numbers but only over a subset of the full acceleration range carries no guarantee 
of the quality of the result. In particular the measured residual difference can significantly 
underestimate the true error.   
 
 From the preceding a strategy for “fitting” the Ggamma calibration factors to 
compete against the simpler-to-implement least squares fitting emerges. The curvature in 
the difference (figure 4) results from using an erroneous R0. Provided such curvature is 
visible in the read data, small adjustments in R0 should bring the difference to be a 
straight line. The slope of that line will then reflect any error in the GCcal and again 
small adjustments to GCcal can be applied to bring the slope to zero.  
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III. Real data study 
 
 A. The machinery – the logged data and spreadsheet analysis being used. 
  One data set analysis in detail. 
 
The machinery in use – by an example: 
 
 The procedure here is to gather together data sets logged (LogView) by the Pet 
page “Ggamma Meter” which include the calculation inputs (frequency, raw gauss clock 
counts, corrected gauss clock counts, radius, calibration numbers) and also include the 
calculation results from the Ggamma meter (GgammaBr and GgammaFr for each 
measurement time in each AGS cycle in the sets. We can then recalculate GgammaBr 
and GgammaFr using different calibration numbers for the gauss clock and for the value 
of R0.  
 
We start by looking at a single cycle (from 23May13 10:02:26). 
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Figure 5a: GgammaFr –GgammaBr  Logview vs recal (as found)  
 
 Here the horizontal scale is the beam energy (Ggamma) where either Ggamma 
evaluation is precise enough to be used. The vertical scale is the difference in the 
calculated values of Ggamma. The black x’s come directly from the LogView data and 
the magenta circles are recalculated Ggamma values using the inputs also found in the 
LogView data sets. 
 
 The scatter of the data is huge. At first we fail to get good agreement (figure 5a). 
The recal and Logview data show systematic differences. We find the values for π and c 
in the Ggamma meter analysis are very slightly different from values used in our 
recalculation (which values were found with Google’s help and so must be right…). 
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Historically these differences are not really problems – sanity aside - because only the 
product (π)(Ro)/c matters in calculating GgammaFr and Ro is free (in the fitting) to 
accommodate the tiny differences we are mentioning. Putting the same (less right) values 
for π and c into the recal machinery gets us to figure 5b – satisfactorily close agreement.  
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Figure 5b:  1 cycle - Same as 5a) except put Ggamma meter values of π and c into model 
  
 Up to now we have been using the “corrected GCC” from Labview. The 
difference between raw GCC and corrected GCC has to do with the Bdd parameter that 
we have not discussed. This correction will be treated later but we mention it now to try 
and reduce confusion later. We want to be able to revisit this correction in the recal to 
allow changing the Bdd parameter. We follow the Pet page machinery that does the Bdd 
correction - in spirit at least - and indeed replicate figure 5b now with our recalculated 
gauss clock counts, taking into account the second derivative of B. 
   
 Next we try to reduce the scatter by averaging over many (349 here) cycles. (Data 
set 23may13, 10:02:22 – 10:24:56). One obstacle to getting good result is the occasional 
cycle with “bad” data, and we do not want to include even one of these in the averages. 
Usually the bad cycles are cycles when beam does not survive. Certainly these can be 
removed. With more data figure 5 morphs to figure 6. The scatter (standard deviation of 
the LogView data divided by the square root of the number of cycles taken) is nicely 
reduced but is still significant at high energy. The scatter late in the acceleration cycle 
does not go away with more statistics.  
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Figure 6a: 349 cycles GgammaFr-GgammaBr 
 
 Now we want to work with this data set, changing the Ggamma meter parameters 
that generate it to see what the Ggamma results are with different coefficients. The 
magenta points in figure 6a show the result of reanalysis with unchanged parameters. We 
take this as success as far as being able to now revisit the parameters. The initial 
parameter set is (GCcal,R0,B0,Bdd)=(19.494, 128453.2, 846, -10) with the units left off. 
With π and c set to more correct values, we continue working with this data set. 
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Figure 6b: Differences now with correct π and c, just the recalculated data points. Fit 
chisq/d 2.9. 
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 Figure 6c shows the same data using the “book” parameters (GCcal, R0,B0, 
Bdd)= (19.5, 128453, 846, 0) 
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Figure 6c: Book parameters (chisq/d ~3.5) Figure 6d fitting, noBdd, chisq/d ~1.76 
 
 Applying an automatic fitting using “book” starting parameters including no Bdd 
term takes us to figure 6d above. The tiny error bars early and large error bars late are 
forcing the fitting contrary to “eye” expectations. 
 
 At this point we will finally specifically define the Bdd term. The cusp in the data 
in both of the above plots near Ggamma 10 is not a feature of (cannot be coped with by) 
the simple model. Because this feature occurs about when the slope of the main magnet 
field voltage is changing – between ~ zero and the approximately constant value achieved 
during most of the acceleration ramp – an ad hoc correction term proportional to this 
slope change is applied to the instantaneous GCcal, namely GCcal(t) = 
GCcal*(1+Bdd*d2B/dt2)).  Adding this freedom to the fitting produces figure 6e.  
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Figure 6e: Allowing GCcal(t) = GCcal*(1+Bdd*d2B/dt2), replot the same data with two 
vert scales 
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 The Chisq/d drops to 1.1, and the cusp is reduced – by construction. The fitted 
parameters are (GCcal, R0, B0, Bdd) = (19.474, 128453.07, 845.8, and -10.4) The huge 
scatter late in the cycle is not improved by this maneuver, but now in the expanded view 
(ignoring the huge scatter stuff) we can examine the fine smooth structure in the data. We 
can look for the curvature in this difference as expected from the section II model. Figure 
7 shows this same data with fitted parameters except with R0 moved around by 0.2mm. 
The curvature from the model appears, perhaps.  

Fitting (f-b) and then sweep R0 +/- .2mm
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Figure 7: Difference data with R0 shifted in 0.2mm steps, all else held fixed. 
 
 Following the model, having adjusted R0 to give a straight scatter (here 128453.2) 
the slope can then brought to zero with GCcal (from 19.475 down to 19.469. 
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Delta Ggamma (f-b) recal with curvature 
removed and resulting straight line flattened.
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Figure 8: Removing curvature and flattening by hand. 
 
The resulting solution has GCcal =19.469 compared to 19.475. The chisq/d has increased 
from 1.1 to 1.22. The difference in the predicted GgammaBr for the two sets of 
calibration factors is given in figure 9 and remains below 0.012, which is about half of 
our figure of merit. 
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Figure 9: The difference in the predicted Ggamma using auto fit parameters or decurve 
and flatten parameters, and using the Bdd correction given by the fit. 
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 The difference in Ggamma of 0.012 at Ggamma 45 would correspond to a 
disagreement in crossing time of about (0.012)*(500ms/50) = 120 usec. Perhaps this can 
be tested with the 36+ intrinsic region. We would need time predictions at the 100 usec 
level. And of course the GCcal active in the machine for the ineffective jump timing set 
created in mid-May was 19.494, according to this too high by at least 0.02 and hence 
expected to provide poor jump quad timings. 
  
 This manual fitting ignores the points near the end of the acceleration cycle that 
are way off the line, plus and minus. If we are to believe the answer, we need to figure 
out why these points can be discredited. Some associated information is given in the next 
figures. The Ggamma differences and the Ggamma values themselves are plotted in 
figure 10. This dance occurs just around the higher energy resonances most needing good 
jumping times. The reported standard deviations of the input data are plotted in figure 11. 
There is little indication of any problem with the data until 585ms, which is after our 
problem. We do not yet have a reason to discard these points. 
 
 One possible explanation for the difference between GgammaFr and GgammaBr 
here is that the orbit length is changing in ways invisible to the measured radial average – 
e.g. in the vertical plane. No plausible numbers for such an effect have been figured out; 
the required orbit distortions appear to be unphysical.. 
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Figure 10: Logview and recalculated Ggamma differences, and the Logview data. 
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Input data and calculated Ggamma standard deviations near full 
energy for this data set.
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Figure 11: The standard deviations in the inputs to the calculations, and in the Labview 
answers 
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B. 2013: Some example sets and parameters summary plots 
 
 Returning to the data sets, it is at least instructive to apply these machineries to 
several data sets over the 2013 running period. In each case the procedures remain the 
same as above. Both an automatic fitting and a “decurve” and flatten fitting are tried. It is 
found to be necessary to sometimes ignore points taken out on the flattop and so if such 
points exist, they are always excluded from the data used. Again this is not understood, 
especially since the points sometimes fall right on prediction and other times are not close. 
 
 The auto-fitting uses “book” starting values. Figure 12 gives the resulting GCcal 
throughout the run. Also shown is the value in the Ggamma meter – the value used for 
any new Jump Quad timing attempts – and, just for reference, our 200 usec figure of 
merit time precision need. The eye fitting –reducing curvature and then flattening – tends 
to result in a value for GCcal slightly lower that that returned by the auto-fitting. And the 
time structure is about the same. It would appear that the gauss clock changed sometime 
in early May and perhaps with some rather fast time structure in late May. In as much as 
this behavior is not understood and significantly affects the time generation, it would 
seem necessary to require the calibration be updated whenever a new timing is to be 
made.   

measurements of GCcal taken over Run13
"by hand" f itting based on removing curvature, 

auto f itting w ith Bo included, f lattop (and transition) excluded
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Figure 12: Calculated GCcal for clumps of data throughout Run 13. 
 
 Figure 13 gives the same information but now for the calculated circumference. 
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variation of Ro during Run13
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Figure 13: Ro as derived from manual and auto fitting Run 13 
 
The manual fitting tends to give a value for Ro larger than that from the auto fitting by 
0.1mm. Of course this is not directly involved in the timing generation given that we use 
GgammaBr, but the result encourages that there is some consistency to this drill. 
 
 The next plot gives the starting field for the gauss clock as calculated by the two 
methods. Again there is a consistent small disagreement and again this is basically 
encouraging. In this case there is a better way to get this information but only if we 
slightly modify the Ggamma Meter machinery in the future. The information from 
frequency and radius is accurate enough at proton injection to tell the energy there. 
Provided that for the Ggamma meter we start the gauss clock counting at injection and 
make a beam frequency measurement there, we can calculate B0. In the present 
machinery, the gauss clock starts counting at AGS T0. There are then about 150 ms 
between start and injection when the gauss clock is accumulating up and down counts. 
The field is nominally flat with some ripple during this period and the calibrations of up 
and down are nominally equal, but we do not need to assume either of these ideas if we 
just start counting at injection. Then B0 can be pulled from the fitting which would be 
good. Indeed then also we can track the injection field – which would be useful in its own 
right.   
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B0 measurement during Run 13
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Figure 14: B0 as calculated from the hand and auto fittings during Run 13 
 
 And finally the time dependence of the Bdd parameter is given in figure 15. This 
is the least well motivated of the fitting parameters and indeed for the hand fitting there is 
not a clear prescription on how to set it. For some data sets its value is highly constrained 
– removing the cusp - while for others the cusp morphs into mushy structure. The value 
coming from the auto-fitting has more meaning. It is satisfactory that this fitting works 
well starting with the value zero. The hand fitting also starts from zero, but is sometimes 
not well constrained.    
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Figure 15  The Bdd fitting parameter during Run 13 as calculated by the two fittings 
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 (choose no curvature over minimum chisq)  fitting, no flattop points, no transition jp pts 
 Hand fitted results    B0 takes part in the fitting, start at "book"  
      book:    
      19.5 128453 846 0 
          
cycles  Gccal R0 B0 Bdd Gccal R0 B0 Bdd 
  counts/ mm gauss  counts/ Mm gauss  
  gauss    gauss    
 5-Jan-12 19.489 128453.20 844.50 -6.50 19.488 128453.216 844.420 -6.370 
 25-Mar-12 19.477 128453.43 845.00 -8.50 19.475 128453.460 845.050 -9.050 
 25-Mar-12 19.479 128453.40 845.00 -8.00 19.475 128453.470 845.100 -9.040 
                  

181 19-Feb-13 19.491 128453.18 846.00 -11.45 19.491 128453.174 845.630 -9.953 
230 16-Mar-13 19.491 128453.10 846.40 -10.00 19.491 128453.098 846.197 -11.430 

 17-Mar-13 19.490 128453.12 846.40 -11.00 19.491 128453.104 846.400 -12.270 
152 23-Mar-13 19.494 128453.00 846.00 -11.30 19.498 128452.920 845.903 -10.480 
230 1-Apr-13 19.488 128453.01 846.20 -11.00 19.490 128452.960 845.913 -10.534 
228 15-Apr-13 19.488 128453.30 846.30 -11.00 19.492 128453.240 846.120 -10.335 
230 1-May-13 19.491 128453.20 846.20 -11.10 19.491 128453.160 846.000 -10.200 
167 8-May-13 19.483 128453.23 846.15 -11.10 19.483 128453.198 845.975 -10.299 
230 16-May-13 19.479 128453.26 846.08 -11.00 19.484 128453.135 845.927 -10.294 
231 23-May-13 19.470 128453.18 846.00 -11.90 19.474 128453.069 845.830 -10.445 
349 23-May-13 19.468 128453.20 846.10 -11.00 19.475 128453.074 845.840 -10.298 
244 25-May-13 19.477 128453.15 846.10 -10.00 19.481 128453.070 845.820 -10.630 
227 27-May-13 19.484 128453.25 846.10 -9.00 19.486 128453.180 845.908 -10.275 
228 28-May-13 19.475 128453.20 846.00 -10.00 19.486 128453.150 845.894 -10.088 
150 3-Jun-13 19.470 128453.30 846.00 -11.60 19.470 128453.243 845.706 -10.918 

 
A Table of the calculated calibration constants throughout Run 13 
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C. 2012: An experimentally poor JQ timing set generation, associated   
 JQ on and off data , fitting issues  
 
 Now we turn to some data taken during the 2012 proton run – so a year earlier 
than where we have been. A Jump Quad timing set was generated on March 25, 2012. 
The data taking was mostly carried out by Rocco Tuccio. AGS final polarization was 
measured (by Haixin Huang and the author) over many “switchings” between the new 
timing set and the active timing set. The new set was clearly inferior. This gives another 
opportunity to see if we can understand from the calibration constants in play at that time 
(for which the author was responsible) the poorer performance of the new timing. To 
some extent there is no surprise here. We will see that the calibrations were not optimal – 
by the techniques used now although if this were the whole story the deterioration caused 
to the measured polarization seems somewhat large. Another reason for looking at these 
sets is that calibration data is available both with the JumpQuads pulsing and with the 
JumpQuads turned off. These sets allow asking directly if the late-in-the-cycle jumping 
around of the differences between GgammaBr and GgammaFr is due to the JumpQuads. 
The answer is no. 
  
 We have two set of data collected during the timing data acquisition 25Mar12, 
figure 12a with the JQs pulsing and 12b with the quads off. These Ggammas are 
generated using the calibration numbers in play for the timing calculation. The calibration 
setup in use were: (GCcal, R0, B0, Bdd) = (19.49, 128453.5, 846.2, -11). 
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Figure 12a: difference JQ on  chis/d 2.65       Figure 12b: difference JQ off chisq/d 2.76 
 
 First you might ask why weren’t the calibration numbers set better than this? That 
is the beauty of the large statistics set displayed rather than a single cycle, and perhaps of 
the plotting against energy rather than time. The obvious systematic disagreement was 
not noticed in single cycle data. And it is already clear that the jumping - far beyond 
predicted statistical error - is present in both sets.  
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 Now we try the auto-fitting starting from the usual “book” values. We have not 
well studied the sensitivity if the fitting to the initial conditions but here we notice that if 
we start with the B0 parameter – the initial field for the gauss clock – lower by 1 gauss 
(844g) then the fit selects a solution with Bdd close to zero, and the fitting reduces 
chisq/d very little (from what results with “book” coefficients). With B0 starting at 845g 
the fit goes to about the same much lower chisq/d solution for the two sets as one would 
expect. The JQon data/fit is shown in figure 13a. (19.475, 128453.46, 845.05, -9.05). 
chis/d 0.61. Following the same drill on the JQoff data gives figure 13b. and calibrations 
(19.475, 128453.47, 845.1, -9.04) chis/d 0.78. And there is nothing further to be done as 
far as the manual fitting strategy is concerned. The points show little curvature and the 
slope of the line is zero.  
 
 Comparing the calibration numbers to the plotted values above for 2013 shows 
that the R0 is larger here (in 2012) – by maybe .03mm and B0 is lower – by half a gauss. 
GCcal is close to the late in run value during 2013. The Bdd number is at the low end of 
the values found in 2013. R0 is allowed to change over months and runs– if the offsets in 
the AGS Orbit Display program are changed or if different sets of pickups are used. B0 is 
sort of the injection field and also could change a bit – though we want to be coming in at 
Ggamma 4.5.  
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Figure 13a: autoFitting JQon                          Figure 13b: autoFitting JQ off  
 
The GCcal derived is lower that what was used for the timing by 0.015 (19.475 vs 19.49). 
B0 is also a bit shifted. The resulting change in GgammaBr is shown in figure 14. This 
would put the beam right on the edge of the correcting region – half in and half out all 
else equal.  
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Delta GgammaBr  (as run - new parameters)
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Figure 14: Predicted change in GgammaBr used in the (bad) timing creation of 25Mar12 
 
 The other thing we want from these sets is a comparison of the jumping behavior 
late in the cycle. Is the pattern affected by the JQs being active? This – the average 
differences in the two JQ situations - is shown in figure 15. The two patterns are similar. 
The JQoff set is not quieter. The timing set has points 1 ms apart and points ~ 10ms apart. 
The tune shifts occur in time near the pair close together. Any JQon/JQoff structure 
difference is not compelling.  
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Figure 13: Usual predicted Differences (GgammaFr – GgammaBr) with JQs on and off. 
The jumping remains. 



 24 

IV. A List of Action Items 
 
The Ggamma Meter calibrations must be revisited whenever a new Jump Quad timing set 
is to be generated.  
  
Revisiting the calibrations requires accumulating large data sets – 200 cycles. Adding the 
machinery to allow getting such sets easily is necessary. 
 
Modeling B (GCC) is not complete. The correction to the incoming count rate by adding 
a modulation proportional to d/dt(dB/dt) is not well founded. If this adjustment is wrong 
the whole approach is undermined. We use GgammaBr for the Jump Quad timing 
determination.  
 
The jumpy behavior of the difference between GgammaBr and GgammaFr late in the 
acceleration cycle is not due to statistics nor to the Jump Quads and is not understood. 
The likely cause is associated with GgammaFr and path length changes in the machine 
though the discussion goes no further. A simple check of the frequency is possible if the 
rf group makes available an averaged version of the frequency sent to the acceleration 
cavities. Plugging this alternative frequency measurement into the Ggamma Meter would 
immediately simplify this discussion though it might well not get rid of the jumping.  
 
The AGS gauss clock starts counting, up counts minus down counts, at AGS T0. The net 
accumulated counts when the beam is injected depend on both up and down calibrations 
and the associated calibration parameter required by the GgammaBr (B0) is not 
rigorously the field at injection. If the gauss counts used by the Ggamma meter started at 
injection, the B0 parameter becomes a real physical quantity well defined just by the 
measured frequency at injection and worries about the calibration of the down counts 
goes away.    
 
The stability of the gauss clock – the GCcal parameter – apparently changes over weeks 
of time. Some investigation into this – e.g. the temperature stability of the environments 
of the system components – would be reasonable. Making a new gauss clock - or even 
tearing into this one – is probably not a good path to follow. 
 
The real constants (π, c, …) in the Ggamma Meter should be checked to be sure they are 
correct. 
 
In the Ggamma Meter pet the option to plot the difference (GgammaFr – GgammaBr) 
against Ggamma rather than against time should be provided. 



 25 

VI. Appendix 1: Error Analysis and the Ggamma measurements at Low Energies 
 
 Using one set of 349 cycles of data (23May13 starting ~10am) the standard 
deviations of the measured quantities are studied. The measurements of the inputs 
(frequency, radius, gauss clock counts) are analyzed to yield their standard deviations 
over the set. The standard deviations of the reported GgammaBr and GgammaFr from the 
Ggamma meter are also calculated. The standard deviations of the means of these 
quantities are just these numbers divided by the square root of the number of 
measurements, here (square root 349) or ~ 18. Taking partial derivatives in the formulas 
in play, the GgammaBr and GgammaFr standard deviations can then also be calculated 
from the associated input standard deviations. Finding the standard deviations of the 
Ggammas both ways is just a check that the error propagation is being done properly and 
that using averages of the inputs is ok to calculate the average of the outputs. Figure A1 
given the results. 
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Figure A1: Reported (filled in diamonds) and recalculated (open circles) standard 
deviations of Ggamma 
 
 The results from (F,r) are associated with the left hand vertical scale; those from 
(B,r) on the right. Note that the (F,r) results require an order of magnitude larger scale to 
fit on the plot late in the cycle. As the beam becomes highly relativistic, the sensitivity to 
frequency becomes high. Early in the AGS cycle the situation is very different. 
GgammaFr has the much smaller statistical errors. A replot of figure A1 showing this 
region is given in figure A2. 
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mean sigmas (Ggamma)  from logView data and recal using logview input sigmas
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Figure A2: Replot the data in A1 for early times in the cycle and now with all data using 
the same vertical scale 
 
 Both sets have tiny errors early (relative to our figure of merit needs < 0.02). For 
the gauss clock this is not particularly interesting as a determination of Ggamma since 
counting only starts at injection – at 150ms. The reported GgammaBr depends mostly on 
the B0 parameter entered into the machinery. For GgammaFr the tiny errors indicates the 
relatively weak dependence on errors in both frequency and radius and hence the absolute 
strength of the result. The step at 190ms correlates (I think) with the shift from “flat top” 
bank to the “pulsed” bank of the main magnet power supply.  
 
 These standard deviations can be broken out into the piece from each of the inputs 
(i.e. frequency, gauss clock counts and radius r) and that is given in figure A3. 
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Figure A3: Contributions to the Ggamma standard deviations from each input 
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 The black points are associated with GgammaFr and are plotted on the left scale, 
again an order of magnitude coarser than the right GgammaBr scale. That the frequency 
error dominates at higher energy is clear and expected. Reducing this variation motivates 
the desire for wider frequency windows and larger data sets. 
 This is not an issue early in the cycle. Again the (frequency and radius) data from 
early in the cycle in figure A3 are replotted in figure A4, now only near injection. And 
the measured standard deviations of the means of all three variables are given in figure 
A5. The variation in the reported GgammaFr due to measurement fluctuations – in F and 
r – do not change the answer at anywhere near the resolution of interest i.e. <.02. 
 
  The measurement standard deviations are tiny relative to a problem level. We 
want to extract a stronger conclusion from this data set. The standard deviations in the (F 
and r) mean measurements at the first time in the cycle (from figure A5) are ( 0.4 Hz and 
0.005mm). From figure A4 the Ggamma errors that result are (1e-6 and 4e-6). How much 
can dF or dr be increased before the effect on Ggamma exceeds say 0.001 –(well below 
our0 .02 standard)? dF could be increased by x1000 or to 400Hz and r could be increased 
by x250 or to 1.25mm.  
  
 To know GgammaFr absolutely requires knowing (Ro +r) and F absolutely.  Our 
well known “r” gets added to the parameter Ro which is not so well known. Nevertheless 
late in the cycle Ro’s value cannot change by much beyond 0.2mm without pulling the 
difference between GgammaFr and GgammaBr “off the page”. Provided we can assume 
that Ro is the same throughout the cycle, its uncertainty is of order 0.2mm and we are a 
factor of five below where GgammaFr at injection is beginning to be affected. It is this 
argument - getting Ro from high energy measurements and applying it to injection 
measurements that allows the injection energy and hence the starting field for GgammaBr 
to be well known.    
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Figure A4: Here the same data – from frequency and radius is replotted with expanded 
scales. 
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Measured sigmas of the mean  for (F, r, and Gauss clock counts) throughout the 
cycle
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Figure A5: the measured standard deviations of the mean in F, r, and GCC) over our 249 
cycle set 
 
 
 
 
 
 
VI. Appendix 2: Correcting the measured frequency for d2F/dt2  
 
 We measure the beam frequency (rf accelerating cavities frequency really) over a 
window in time. The accuracy of the reported frequency increases as this window grows, 
but the answer is the average frequency over the window. If the frequency is fixed or 
changing linearly this is just fine. We shift the window to be centered on our “time of 
interest”. If the frequency has a piece with a quadratic time dependence we still get the 
average frequency but not the value at the center of the window. We can correct for this 
effect, but how big is it? 
 
 We ask this question of the “model” – a lazy man’s way to learn. The following 
figure gives the result. Remember that the model has a perfectly linear B(t) and so 
unphysical changes at the start and end. From this we conclude that a correction seems 
unnecessary throughout the cycle for windows less than 5 ms wide. We could include a 
correction for frequency width in the machinery and check that it doesn’t change the 
reported GgammaFr. In order to do this we need to figure out d2F/dt2 in a robust way – 
certainly not from the frequency measurement. It could be calculated from the main 
magnet function or from the measured gauss clock numbers. 
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Error in reported Ggamma(F,r) for given freq meas window

-0.005

0.000

0.005

0.010

0.015

0.020

100 200 300 400 500 600

time in cycle (ms)

er
ro

r i
n 

G
ga

m
m

a(
F,

r)

10ms

2ms

5ms

 
Figure29: Error introduced due to not correcting for the frequency window and F(t) 
nonlinear dependence. Even a 5 ms window (which we rarely can use) is not a big 
problem. 
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VII. Power Point Presentation at Haixin’s Polarization meeting  12Feb14 
 
(just the slides from the 12 feb talk and added here as a convenience. This should be a 
shorter version of the above note.) 

Calibrating the AGS Gauss Clock
mostly the old way

leif ahrens  12Feb14

 

AGS Ggamma Meter
• GgammaBr(t) and GgammFr(t) are outputs from the 

AGS “Ggamma meter” machinery (Pet)

• Inputs to the meter are :measurements [GCC(t), F(t) r(t)] 
and calibrations [ R0, B0, Gccal, Bdd ]

• The machinery calculates the beam energy (or 
Ggamma) based on either

GgammaBr(t) <= {GCC(t),r(t), d/dt(dB/dt)(t)[GCcal, Bo, Bdd]}
or 

GgammaFr(t) <= {F(t),r(t))[R0]} 
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The Calibration Exercise
• so the Ggamma meter provides GgammaBr(t) and 

GgammaFr(t) using whatever calibration numbers it is 
given. 

• We postulate that if GgammaBr(t) = GgammaFr(t) then  
that GgammaBr(t) is close enough to the true 
Ggamma(t)) to allow adequately accurate resonance 
crossing times to be calculated (back on slide 2) 

• So the game is to figure out how to make the two energy 
determinations equal which means minimizing the 
difference between them throughout the AGS 
acceleration cycle

• We try to gain some insight from a simple model

 

A Simple Model for Measuring Calculated 
Ggamma sensitivities
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We assume that the magnet cycle in the AGS is given by a linear ramp. The 
parameters are chosen to be close to typical proton cycles. The transitions from 
flats to ramping are not at all realistic having discontinuous slopes in the model. 

B(t), rho => gamma(t), beta(t), 
Ggamma(t)  (on the central orbit - rho)

(beta(t), Ro) => frequency  F(t)

B(t), Gccal =>  GCC(t)

So we have the perfect set.

Then we can introduce “errors” into

the pathlength (through Ro) messing up 
GgammaFr(t) 

Or into Gccal messing up GgammaBr
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variation of "measured" Ggamma from true value: GC cal 
reduced by .019 GCC /Gauss 19.5->19.481, radius increased 

by .18mm 128453->128453.18mm
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So that is what is shown here. The effect of changing Ro (128453mm) 
by 0.2mm (magenta) or of changing GCcal (19.5 GCC/gauss) by 0.02 
(black) gives errors in Ggamma that grow to 0.04 at Ggamma = 45. 
Our figure of merit tolerance ishalf this - 0.02 in Ggamma.

If GgammaBr is 
wrong by .02 we are 
in trouble.

The corresponding 
error in Gccal is 
0.01(GCC/gauss)

And the 
corresponding error 
in Ro is 0.1mm

 
Let’s look at some data.       23may13 231 cycles

This shows the difference between GgammaFr and GgammaBr as the machine was running 23May13 
and using the calibration set that was “active” in the Ggamma meter. 

The horizontal scale for the left plot is Ggamma for the right is time in cycle. The vertical is the difference 
reported between GgammaFr and GgammaBr. Measurements well out on the flattop are evident there.  
Our concern level is 0.02 which is crossed at Ggamma 20. 

But notice other properties of this data set - which are very typical: There is huge scatter in points at 
energies above Ggamma 20 which are not explained by the cycle-to-cycle scatter (error bars show the 
error of the mean over the set).
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Now “play” with this data set a bit - what does it look like with other cal sets?
Delta Ggamma (f-b) recal
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First put in what I call “book”
parameters - numbers close 
to the designs and no 
dependence of the 
GgammaBr on d/dt(dB/dt)

Gccal, Ro, Bo, Bdd

19.50,128453.0,846,0

The real problem here is that 
the difference stays within 
our 0.02 criterion - which 
might cause us to think 
Gccal was ok.
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Next try fitting this set to 
minimize the differences. 
The result has structure -
curvature - that our model 
would associate with an 
incorrect Ro. But it has 
much much more – early 
structure beyond our 
model’s ability, large real 
scatter later in acceleration 
(again not understood) and 
large error bars late due to 
frequency scatter the 
sensitivity to frequency 
(effectively allowing the fit 
to disregard these points).

19.52,128452.68,845.8,0
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Gccal went from 49.5 to 49.52 - a huge 
change. Continuing in this exercise, we 
remove the flattop points from the 
fitting and try again. This gives the 
plots on the right. The shape is greatly 
improved though any curvature is 
obscured by the point scatter. The 
differences on flattop are 
systematically away from zero.

And the Gccal dropped from 19.5 to 
19.474. Again a huge change by our 
rules. 

19.474  128453.07   845.8 -10.4
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And just for completeness, we give a 
solution 1) fixing B0 to give a zero 
difference at injection and then 
removing curvature shifting Ro  and 
flattening using Gccal, all of thie “by 
eye”.

19.467   128453.25   846   -11

The last two solutions are nearly 
close enough give some comfort. And 
for this set the flattop points have 
come back to near zero. 
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The “bottom line” from this exercise as far as the gauss clock calibration is 
concerned: the GCcal coefficient steps from 

19.5 book

19.52 (full fitting)

19.474 (exclude flattop and full fit)

19.467 “by hand” – (Bo from GgammaFr, remove curvature by eye)

19.475 (Yann_29May

A variation in this slope parameter of 0.01 moves the reported Ggamma
by 0.02 or the times by 200usec. For our “fittings” we have a spread of 
0.05 (500usec), the three that exclude flattop vary by 0.007 (70usec). 

We should say in passing that this is a well behaved data set. Similar 
processing on other sets frequently does not look good and does not fit on 
the flattop. 
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The early difference 
though tiny has smooth 
structure which is beyond 
our model – even 
including the Bdd term. Is 
this a problem with the 
GgammaFr (the radius) or 
with GgammaBr?

The late acc cycle differences 
have structure that is enormous 
relative to the mean standard 
deviation. The worst is 
somehow associated with 36+ 
but the other stuff is also 
problematic. If we could fix this 
we would either gain more 
confidence in the fitting method 
or see more clearly that it is 
wrong.
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Problems:
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Nevertheless: life being short, we go with the fitting, ignore flattop and plot 
GCcal measured vs time over Run13

The black points are what 
is just described. The 
magenta are “eye” fits 
(also ignoring the flattop 
points).The green bar is 
our usual figure-of-merit 
error - the shift that would 
result in a 200 usec
timing shift if a JQ timing 
run were taken with the 
active calibration number 
this far from the truth. 

This looks almost 
plausible - better than we 
deserve – except for the 
fit points at 28May. Can 
the gauss clock 
calibration really jump 
around on such a short 
time scale?

measurements of GCcal taken over Run13
"by hand" fitting based on removing curvature, 

auto fitting with Bo included, flattop (and transition) excluded
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Maybe this is too hard i.e. learning the calibration factors from the 
differences (GgammaBr – GgammaFr). Yann’s learning Ggamma at 
many points during the cycle is a somewhat alternative path. It provides a 
few or a large set of additional constraints which could be included in the 
fitting. Even one time point late in the cycle but before flattop would be 
very useful.

But let’s continue and see what we need:

Apparently the calibrations have to be checked before data is taken to 
create a new Jump Quad timing file.

Accumulation and analysis of large data sets needs to be much easier –
to make the calibration check doable.

The model – B(GCC) vs time or some radius effect that looks like a GCC 
error – is not understood. The ad hoc Bdd correction makes the “eye”
fitting possible, but unexplained difference behavior remains. Since we 
use GgammaBr for the timing, this is very important. Maybe the Bdd
guess is wrong. If somehow GgammaFr is responsible for the early 
structure then this whole construct and the derived GCcal is wrong. 
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The differences go jumping around late. Maybe this is demonstrating a problem 
with the frequency meter. We may have an option here, namely the rf group’s 
knowledge of the frequency sent to the cavity. To use that info it needs to be 
averaged starting from raw very time dense numbers. The Ggamma meter is 
ready to accept such a table.

The Gauss clock counts used in the machinery start counting at AGS T0. That 
means “Up and Down” counts are added into the sum across the sometimes long 
injection porch. This adds some confusion and means the B0 in the fitting is 
rigorously neither the field at injection nor at T0. To keep this parameter’s 
interpretation simple we should figure out how to start counting the gauss clock 
counts used in the Ggamma meter at - or just before - injection.

The stability of the gauss clock is questioned. Some investigation into this - e.g. 
the temperature stability of the environment for the electronics? - is reasonable. 
Making a new gauss clock - or even climbing into this one - are probably not 
appropriate options. 

 
 
    


	85194
	C-A/AP/509
	March 2014
	Brookhaven National Laboratory

	Rev4AGSGgammaMeterandCalibratingtheGaussClock

