
C-A/AP/506 
February 2014 

 
 

Simulation of statistical fluctuations in the 
spin precession measurement at RHIC 

 
A.A. Poblaguev 

 
 
 
 
 
 
 
 
 

 
 
 

Collider-Accelerator Department 
Brookhaven National Laboratory 

Upton, NY  11973 
 

 
 
 

Notice: This document has been authorized by employees of Brookhaven Science Associates, LLC under Contract 
No. DE-AC02-98CH10886 with the U.S. Department of Energy.  The United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this document, or 
allow others to do so, for United States Government purposes. 
 

                                  BNL-104379-2014-IR 



Simulation of Statistical Fluctuations in the
Spin Precession Measurements at RHIC

A.A. Poblaguev

February 25, 2014

Abstract
Measurements of the driven spin coherent precession Sx(t) = S

(0)
x −S(1)

x sin (ωt+ ϕ0)
were initiated in RHIC Run13. The expected value of the precession amplitude
S

(1)
x ∼ 2 × 10−4 is about the statistical error in a single measurement and data fit

gives a biased estimate of the S(1)
x . For a proper statistical interpretation of the results

of the several measurements, statistical fluctuations were studied using Monte-Carlo
simulation. Preliminary results of the spin precession measurements in RHIC Run13
are presented.

1 Introduction

Proton beam polarization at the Relativistic Heavy Ion Collider (RHIC) is monitored
by 4 pCarbon polarimeters [1]. Each polarimeter consist of 6 silicon detectors located
as shown on Fig. 1. In a regular polarization measurement, the vertical component
of the beam polarization Py is derived from the left/right asymmetry of the recoil
Carbons production:

Ay =
N↑R −N

↑
L

N↑R +N↑L
=
N↓L −N

↓
R

N↓L +N↓R
= Py〈AN 〉 (1)

Here, N↑↓LR is number of detected Carbons in the left/right detectors depending on
the beam polarity. The average value of analyzing power 〈AN 〉 is calculated using
predefined dependence AN (E) of analyzing power on Carbon kinetic energy and ex-
perimentally measured energy spectra of the Carbons. Measurements with flipping
polarity of the beam allows one to strongly suppress systematic errors in the measure-
ments:

Ay =

√
N↑RN

↓
L −

√
N↑LN

↓
R√

N↑RN
↓
L +

√
N↑LN

↓
R

(2)

This solution is usually referred as “the square root formula”. For small values of
intensity (↑↓), acceptance (LR) and physical (Ay) asymmetries, the statistical accuracy
of the determination of the asymmetry depends only on the total statistics of the
measurement:

σA ≈
√

1
Ntot

=

√
1

N↑R +N↓L +N↑L +N↓R
(3)
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Figure 1: A schematic view of the RHIC pCarbon Polarimeter. Each detector consists of 12
Si strips. Recoiled Carbon signals are isolated by comparison of measured Carbon time of
flight and energy deposited in the strip.

In RHIC Run13 the study of the driven spin coherent precession [2] was attempted.
The precession may be identified by observing oscillation amplitude S(1)

x of the hori-
zontal component of the beam proton spin (perpendicular to the beam direction).

Sx(t) = S(0)
x − S(1)

x sin (ωt+ ϕ0) (4)

The oscillation frequency ω is controlled by the AC Dipole [3] and is known with a very
high precision. One can determine the horizontal component of the beam polarization
by measuring up/down asymmetry of recoil Carbons production:

Ax =

√
N↑UN

↓
D −

√
N↑DN

↓
U√

N↑UN
↓
D +

√
N↑DN

↓
U

(5)

In this case only detectors 1, 6 (up) and 3, 4 (down) are employed. The spin precessing
around stable spin direction1 results in oscillation of measured horizontal asymmetry:

Ax × 103 = a0 + a sin (ωt+ ϕ0) (6)

The factor 103 is entered here to define the scale of the asymmetry amplitudes a0, a ∼ 1
used in this note.

The results of one such measurement [4] (RHIC run 17597.006) is shown on Fig.
2. The total statistics in this measurement was 51.3 × 106 events. For every event,
the phase ϕ (0 ≤ ϕ < 2π) was derived from the event time t counted relative to a
special phase marker signal. The asymmetry was calculated separately for each of 8
equal phase bins.

2 Results dependence on the number of bins.

Generally, a small number of bins used in data analysis may result in systematic error in
the measurement. To evaluate this effect, 109 events in the polarimeter(factor 20 larger

1This direction has a few degree deviation from the vertical line.
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Figure 2: A single run (17597.006) data fit: a0 = 0.65±0.14, a = 0.47±0.20, ϕ0 = 2.56±0.44.
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Figure 3: Simulation of the precessing amplitude measurement with 109 events.

than in a regular measurement at RHIC) was simulated. In the simulation, events were
distributed between up and down detectors in accordance with beam polarity and spin
precessing phase. The following asymmetry oscillation parameters were used

a0 = 1.0, a = 0.3, ϕ0 = 0. (7)

The result of the simulation is displayed in Fig. 3. The evaluated precessing amplitude
a is consistent within a 15% statistical error with a value of 0.3 used in the simulation.

Statistical sensitivity to the number of bins may be enormously increased with no
change of relative systematic error if we just enlarge the value of a by a factor of
100. Simulation of 200M events with such a parametrization allowed us to evaluate
systematic error due to the number of bins nb with high accuracy

δasyst/a =


−10.0% if nb = 4
−2.6% if nb = 8
−0.7% if nb = 16

(8)
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Thus, for any reasonable statistics of the measurements at RHIC, the systematic error
due the number of bins nb = 8 is negligible compared to the statistical error.

The systematic errors shown in Eq. (8) can be reproduced in a simple calculation.
If the value of phase corresponding to the bin i center is ϕi and the bin width is
2δ = 2π/nb than the sinusoid amplitude will be averaged as

sin (ϕi + ϕ0)⇒ 1
2δ

∫ ϕi+δ

ϕi−δ
sin (ϕ+ ϕ0) dϕ = sin (ϕi + ϕ0)

sin δ
δ

(9)

Thus, the binning results in scaling of the precession amplitude by a factor

sin (π/nb)
π/nb

≈ 1− π2

6n2
b

(10)

The calculated scaling factor (10) is in a good agreement with results of simulation
(8).

3 Simulation of the results of a single measure-

ments.

To study the effects of statistical fluctuations in the precession measurement it is
convenient to use the following parametrization of the asymmetry oscillation

a(t) = a0 + ac sinωt+ as cosωt (11)

which is derived from the Eq. (6) by substituting ac = a cosϕ0 and as = a sinϕ0.
The event distribution over the measured phase ωt + ϕ0 → ϕ (0 ≤ ϕ < 2π) may

be parametrized as

dN/dϕ = N0(1 + a0 + ac sinϕ+ as cosϕ) (12)

For simplicity, four measured numbers of events N↑↓UD (see Eq. (5)) were replaced by
one number N assuming that N0 is known.2 For such a distribution, the parameters
a0, ac, and as can be measured as:

N0a0 =
∫
N(ϕ) dϕ−N0 (13)

N0ac =
∫

2 sinϕN(ϕ) dϕ (14)

N0as =
∫

2 cosϕN(ϕ) dϕ (15)

It directly follows from Eqs. (13–15) that statistical errors

σ0 =
√

1/N, σc = σs =
√

2/N (16)

2The validity of such an approximation for the statistical error estimate is implicitly provided by the
square root formula.
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Figure 4: Normalized distributions of the measured precession amplitude a.

of the determination of parameters a0, ac, and as, respectively, are unequivocally
derived from the total statistics N of the measurement. Also the statistical fluctuations
for these parameters are uncorrelated

〈δ0δc〉 = 〈δ0δs〉 = 〈δcδs〉 = 0 (17)

The simplest way to simulate the result of a single measurement of spin precession
is just to assign Gaussian distributed random numbers G(mean, σ) to the measured
parameters:

a0 = G(ã0,
√

1/N) (18)
ac = G(ãc,

√
2/N) (19)

as = G(ãs,
√

2/N) (20)

Here, N is total number of events in the measurement and ã0, ãc, and ãs are actual
values of the spin precessing parameters. With no loss of generality we may assume

ãs = 0, ãc = ã (21)

where ã is the precession amplitude. For the RHIC fill 17597 measurements (N ∼ 51M
events), the statistical errors for the precession parameters ac and as are equal to

σ = 0.20. (22)

Expected distributions of measured precession amplitude a for several values of ã are
shown on Fig. 4. Taking into account the distribution dependence on ã, the result of
data fit a(fit)

17599.006 = 0.47± 0.20 (Fig. 2) should be statistically interpreted as:

a17599.006 = 0.42+0.21
−0.22 (23)

For analysis, it is convenient to consider the square of the precessing amplitude:

a2 = ã2 + 2ãσδc + σ2(δ2
c + δ2

s)
= (ρ̃+ 2

√
ρ̃δc + δ2

c + δ2
s)σ

2 (24)
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Here ρ̃ = ã2/σ2 is a parametrization of the actual spin precession amplitude ã and
δc,s = G(0, 1) are Gaussian distributed random numbers. The mean measured value
of a2 and variance may be evaluated as

〈a2〉 = (ρ̃+ 2)σ2 σ2
a2 = 4(ρ̃+ 1)σ2 (25)

One can see that measured value of a2 gives a biased (over-evaluated) estimate of the
ã2. The bias becomes negligible if a� σ. Since the bias, 2σ2 = 4/N , is unambiguously
calculated from the total number of events N in the measurement, we can employ the
unbiased estimate ρ of the spin precession parameter ρ̃:

ρ = a2/σ2 − 2 = ρ̃+ 2
√
ρ̃δc + δ2

c + δ2
s − 2 (26)

Mathematical expectation and variance of the measured parameter ρ are equal to

〈ρ〉 = ρ̃, σρ = 2
√

1 + ρ̃, (27)

respectively.
In terms of parameter ρ, the results of run 17597.006 may be presented as

ρ17597.006 = 3.52 (28)

4 How to combine several measurements.

The expected value of precession amplitude in RHIC fill 17599 is about ã ≈ 0.2 [5].
It can not be reliably isolated in a single measurement with statistical accuracy of
σ ≈ 0.20.

If there are n measurements and relative phase in the measurements is known
(coherent measurements), then we can fit all data together. The statistical fluctuations
of such a combined measurement will be described by the same equation (24) after a
substitution σ → σ/

√
n. In this case:

ρcoh = a2/σ2 − 2/n, σcohρ =
2
√
ρ̃+ 1/n√
n

(29)

Here a is amplitude measured in the combined fit.
Alternatively, we can measure (after proper alignment of the phase) amplitudes a(i)

c

and a(i)
s in every run i separately and than calculate the average precession amplitude

a2 = a2
coh =

(∑
a

(i)
c

n

)2

+

(∑
a

(i)
s

n

)2

(30)

which should be used in Eq. (29).
If phases in the measurements are not aligned (incoherent measurements) then we

can calculate the average value

ā2 = a2
inc =

∑
(a2
c(i) + a2

c(i))

n
(31)
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Figure 5: Distributions of unbiased estimates ρ of the precessing amplitude ã depending on
number of measurements n and actual value of ã = 0 (black lines), ã = 0.2 (blue lines),
ã = 0.4 (red lines). Solid lines correspond to the coherent measurements while dashed lines
are for incoherent measurements. The statistical fluctuations in a single measurement was
assumed to be σ = 0.20 (51M events).

In this case

ρinc = ā2/σ2 − 2, σincρ =
2
√
ρ̃+ 1√
n

(32)

Obviously, coherent measurements provide better accuracy of determination of preces-
sion amplitude ã. However, for a relatively large signal ã & σ effect is not essential.

Using Eq. (24) one can find the distribution of measured values of ρ for any
assumed value of the actual precessing amplitude ã and number of measurements n.
Such distributions of ρ for several values of ρ̃ and n are shown on Fig. 5.

5 Confidence intervals

.
These distributions may be used to determine confidence intervals for the measured

value of ρ (or a). If Pn(ρ, ρ̃) is a probability that unbiased estimate of precession
amplitude will be larger than ρ in a set of n measurements of the actual value of ρ̃,
then for any given probability p and measured value of ρ one can find the corresponding
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value of ρ̃:
p = Pn(ρ, ρ̃ = ρp) ⇒ ρp = Rn(ρ, p) (33)

Equation (33) allows one to present the results of measurement of precessing amplitude
in a standard way:

a2
meas/σ

2 = (ρ0.5)+σ+
−σ− (34)

where σ+ = ρ1−α/2 − ρ0.5, σ− = ρ0.5 − ρα/2, and 1 − α is a confidence interval. For
standard errors (1σ) the value of α = 0.3173 should be used.

If ρα/2 > 0 the result of the measurement may be rewritten as

ameas = (σ
√
ρ0.5)

+(
√
ρ1−α/2−

√
ρ0.5)σ

−(
√
ρ0.5−√ρα/2)σ , (35)

otherwise the upper limit should be set:

ameas < σ
√
ρα/2 (1− α CL) (36)

6 Precession measurements in RHIC Run13

In the RHIC Run13, there were totally 10 measurements of spin precessing amplitude.
All data may be separated into 3 groups with slightly different condition of measure-
ments. Every measurement took about 30 sec with about 5 min interval between
measurement in the same group. The relative phase in every group of measurements
was controlled by sending a phase marker signal.

The preliminary results of data analysis are displayed in Fig 6 and Table 1. Only re-
sults of the second group of measurements (runs 17597.006-008) may be interpreted as
observation of the precessing amplitude. However, confidence level of such an observa-
tion is not sufficient. On other hand, there is no disagreement within statistical errors
between results of the measurements and expected values of the precessing amplitude.
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Figure 6: Measurements of the precessing amplitude in RHIC Run13.
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Expected Incoherent Coherent
RHIC runs a Prob(a > 0) a Prob(a > 0) a
17597.003-005 0.15 63% < 0.28 (90% CL) 75% < 0.37 (90% CL)
17597.006-008 0.18 85% 0.24+0.14

−0.21 85% 0.19+0.12
−0.16

17599.002-005 0.15 4% 0.0 (90% CL) 23% < 0.16 (90% CL)

Table 1: Preliminary results of the statistical analysis of the precession amplitude mea-
surements. Results are shown separately for coherent and incoherent phases in the mea-
surements. The expected precession amplitudes are given in accordance with [5]. The
Prob(a > 0) = 1 − Pn(ρmeas, 0) is probability that a non-zero precessing amplitude was
observed.

7 Summary

In this note, a method of simulation of the statistical fluctuations in the spin precessing
measurements at RHIC was discussed.

It was shown that binning of signal phases leads to the well controlled systematic
error which is negligible compared to the statistical error of measurements.

It was found that precessing amplitude determined in the data fit is a biased (over-
evaluated) value of the actual amplitude. The methods of calculation of the unbiased
amplitude both for coherent and incoherent measurements as well as ways of statistical
analysis of results of measurement was discussed.

Even though the preliminary analysis has not yielded any statistically significant
measurement of driven spin precession, the second line in Table 1 indicates that the
precession may be isolated with more data acquired.
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