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Simulation of radiation damping in rings,

using stepwise ray-tracing methods

F. Méot
Brookhaven National Laboratory

Upton, NY, 11973, USA

(Dated: December 14, 2014)

The ray-tracing code Zgoubi computes particle trajectories in arbitrary magnetic and/or electric
field maps or analytical field models. The code contains a library providing most types of optical
elements encountered in beam optics. It includes a built-in fitting procedure, spin tracking, many
Monte Carlo processes. The accuracy of the integration method allows efficient multi-turn tracking
in periodic machines. Energy loss by synchrotron radiation, based on Monte Carlo techniques,
has been introduced in Zgoubi in the early 2000s for the purpose of studying effects of stochastic
radiation on particle dynamics in the linear collider beam delivery system, and duly benchmarked
in that context. However, only recently has this Monte Carlo tool been used for systematic beam
and spin dynamics studies in rings. Some beam dynamics aspects of this recent use of Zgoubi
capabilities, including considerations of accuracy as well as further benchmarking in the presence of
synchrotron radiation in rings, are reported here.

I. INTRODUCTION

Stochastic SR was first introduced in the Zgoubi
code [1–3] in 2000 [4], for assessing emittance pertur-
bation in the beam delivery system of the “Tesla Test
Facility” (an early, European, test version of the “Linear
Collider”). The Monte Carlo source code introduced in
Zgoubi was drawn from the DYNAC particle dynamics
code developed at Saclay in the late 1980s, by the author
and others [5] - SR simulations in DYNAC were used
in the design of the recirculating arcs in the “ALS” and
“ELFE” electron recirculator projects [6, 7]. The present
report provides detailed numerical analysis of the damp-
ing effects on beam dynamics in rings, and shows the
accuracy of the data so obtained, by comparison with
theoretical expectations. For part of it, this work is con-
cerned with benchmarking, which is motivated by on-
going activities regarding high energy machine projects
as the electron-ion collider eRHIC [8] at BNL (RHIC is
the relativistic heavy ion collider), which also require spin
tracking, a capability of Zgoubi [9] which had motivated
its use in recent design studies regarding the e+-e− asym-
metric collider project super-B [10]. It is planned, in a
near future, to further report on similar thorough dy-
namics simulations regarding the effects of SR on po-
larization, in electron recirculators and in rings, as spin
diffusion - such spin dynamics studies are being carried
out at present and yield expected results, in concert with
the use of the code in the design of a “fixed field alternat-
ing gradient” version of the eRHIC electron recirculator
of the Electron-Ion Collider project at BNL [11].
Note that SR loss simulation has been installed in other

codes, possibly using different methods. For instance,
element slicing, imparting energy kicks after each slice,
using either Gaussian statistics or Monte Carlo photon
emission, as in elegant [12], or SAD [13]. Spline interpola-
tion to the standard radiation integrals, as in BMAD [14].
The MAD code [15] as well has provision for particle
tracking with quantum effects of synchrotron radiation.

Other methods include applying an average energy loss at
a reduced number of steps, and on that average applying
an algebraic (positive or negative) random energy cor-
rection to restore the stochasticity. Advantages or draw-
backs may be found in one or the other of these meth-
ods, depending on the objectives, as CPU time, accuracy.
Many of these codes are documented, their SR function-
alities have been subject to publications, possibly includ-
ing benchmarking exercises, comparisons between codes
can be found [16].

II. THE RAY-TRACING CODE ZGOUBI

A. Introduction

The ray-tracing code Zgoubi [1, 2] computes trajecto-
ries of charged particles in arbitrary number, in optical
assemblies built from analytical models of fields and/or
in magnetic or electric field maps. The code contains a
built-in fit procedure, spin tracking, in-flight decay and
several other Monte Carlo process simulations. It also
provides synchrotron radiation (SR) calculation, on the
one hand the spectral-angular radiation from particle mo-
tion, used for instance to understand and fix issues of
negative interferences at LEP [17], and for the design
of the SR based beam profile monitoring installations at
LHC [18], on the other hand the energy loss and dynam-
ical effects on particle motion, the subject of this report.
SR capabilities include the handling of undulator radia-
tion [18–20]. Development of coherent SR modelling has
been undertaken in the early 2000s, in view of bunch com-
pression chicane design studies, yet not released so far.
The high accuracy of the numerical integration method
in Zgoubi is well illustrated in recent tracking simulations
requiring tens of thousands of turns for the study of po-
larized proton beam transport through strong depolariz-
ing snake resonances at the RHIC collider [21], including
full acceleration cycle simulations, 150000 turns about,
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in RHIC injector, the alternating gradient synchrotron
(AGS) [22].

B. Synchrotron radiation in Zgoubi

The details of the numerical method for the step by
step integration of particle and spin motion can be found
in Zgoubi Users’ Guide [2], the following focuses on the
simulation technique regarding the effects of synchrotron
radiation on the dynamics.
SR effects are introduced by modifying the particle vec-

tor momentum at the end of an integration step. The
next sections describe the main aspects of the technique,
a general theoretical treatment can be found in Ref. [23].

1. Energy loss

Given a particle travelling in the magnetic field of an
arbitrary optical element or field map, Zgoubi will com-
pute the energy loss due to stochastic photon emission,
and update the particle momentum as a result of that
effect, at each integration step. The energy loss is cal-
culated in a classical manner, based on two random pro-
cesses, namely,
- probability of emission of one or more photons, by a

particle with rigidity Bρ (energy E), over an integration
step ∆s, under the effect of 1/ρ curvature,

p(k) =
Λk

k!
e−Λ with Λ =< k >=< k2 > (1)

with Λ = 5er0
2~

√
3
Bρ∆s

ρ the average number of photons ra-

diated over ∆s (r0 = e2/ 4πǫ0m0c
2 is the classical radius

of the electron, e the elementary charge, m0 the electron
rest mass, ǫ0 = 1 / 36π109),

- energy ǫ of the emitted photon(s), following the prob-
ability

P(ǫ/ǫc) =
3

5π

∫ ǫ/ǫc

0

dǫ

ǫc

∫ ∞

ǫ/ǫc

K5/3(x)dx (2)

with K5/3 the modified Bessel function, ǫc = 3~γ3c/2ρ
the critical energy of the radiation (γ = E/E0 with E0 =
m0c

2 the rest energy).

2. Dynamical effects

The correction to the particle energy is obtained by
summation of the individual energies (Eq. 2) of the k
photons (Eq. 1) emitted along ∆s.

SR statistics in uniform field will therefore converge
towards the following averages [23] :
- energy loss,

∆E =
2

3
r0E0γ

4 ∆s

ρ2
=

2

3
r0ecγ

3B
∆s

ρ
(3)

(an other form of the familiar relation ∆E/E ≈
1.88 10−15 γ3∆θ/ρ),
- energy spread

σ∆E/E =

√
110

√
3~c / πǫ0

24E0/e
γ5/2

√
∆θ

ρ
(4)

(which writes σ∆E/E = 3.80 10−14 γ5/2
√
∆θ/ρ, for elec-

trons).
Note that, unless otherwise specified, notations in this

study assume β = v/c ≈ 1.

3. Benchmarking, preliminary steps

At this stage, the installation of the Monte Carlo ma-
chinery in Zgoubi can be benchmarked for these quanti-
ties, assuming, following the hypotheses in appendix A,
iso-magnetic lattice and ρ = 24.95549 m. From a prac-
tical point of view, in order to stick to ideal theoretical
conditions, a single bend is tracked once-through, so to
avoid such effects as orbit spiraling, momentum spread,
that may be sensible over a large ring or in presence of
RF compensation.
Results are given in Tab. I. The classical, theo-

retical formulæ used are recalled in the rightmost col-
umn. Es is the total energy of the reference particle,

Cγ = 4π
3

r0
(m0c

2)3
. The values so computed are for 6 GeV

kinetic energy, they are converged numerically, up to the
last digit shown in the table, in terms of the integration
step size in the bend (about 1 cm step size) and of the
number of radiated photons (made large enough, via the
number of passes), this is shown in Fig. 11, appendix B.
It can be seen that the agreement between Zgoubi

tracking data (col. 3 in Tab. I) and theoretical expec-
tations (col. 4) is very good, this is a first step towards
validation the SR Monte Carlo installation in Zgoubi.
Monte Carlo losses at higher energies are further shown
to yield as good agreement with theory, in Tab. III.

4. Scattering

SR effects on particle dynamics are either limited to
the change of particle energy, or may include scatter-
ing, namely, a change in the direction of the momentum
vector due to the angle of emission of the photon with
respect to that vector, in which case a third random pro-
cess,
- the photon emission angle,

may be accounted for.
Trajectory scattering may assume for simplicity a

cylindrical-symmetric Gaussian distribution

p(ξ) = exp(− ξ2

2σ2
ξ

) (5)
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TABLE I. Preliminary benchmarking : SR loss characteristics in the Chasman-Green cell defined in Tab. V, appendix A. These
quantities have been computed from a large number of once-through passes, of a 3000 particle batch, in a single dipole, they
are shown here scaled to a full turn (64 such dipoles).

Kinetic energy 6 GeV Units Zgoubi Theory
tracking value formula

(SI units)

Energy loss, Us MeV / turn 4.59565 4.59565
Cγ

2πE4

s

∮ ds
ρ(s)2

iso−ρ
= Cγ

E4

s
ρ

Critical photon energy, ǫc keV 19.2049 19.2051
3~γ3c
2ρ

Average photon energy, ǫ keV 5.9136 5.9136 8
15

√
3
ǫc

Nb. of average photons /turn/particle 777.12 777.12 Us/ǫ

rms energy spread,
√

(ǫ− ǫ)2 keV 10.7375 10.7375

√
211

15
√
3
ǫc

of the photon emission angle ξ with respect to the par-
ticle velocity. For simplicity as well σξ may be consid-
ered independent of photon energy ǫ, with value ≈ 1/γ.
Whether these two approximations hold may be prob-
lem dependent, however these hypotheses may easily be
improved in the code if this is found necessary.
Accounting for scattering is an option in Zgoubi. Since

its effect on beam divergence is very small in the present
benchmarking conditions (mainly a matter of asymptotic
vertical invariant value), it does not need be (and is not)
taken into account.

5. Field scaling

Particle stiffness decrease upon SR loss entails in-
creased strength of the magnets, in particular the cur-
vature in dipoles, 1/ρ. In the case of single-pass beam
lines, this effect may be taken care of so as to keep the
bending and focusing strength of the optical elements
unchanged, by scaling of the magnetic fields to the theo-

retical average energy loss, namely (Eq. 3)

∆Escaling =
∑

bends

2

3
r0ecγ

3B∆θ (6)

Note the following : (i) using that analytical expression
in computing the scaling coefficient is preferred to the
average energy loss from the tracked particle population,
since in the latter case it would make it dependent on
the accuracy of the statistics ; (ii) on the other hand, in
the present state of Zgoubi coding that scaling is only ac-
counted for in dipoles, however it can easily be extended
to higher order multipoles if useful.
When simulating storage rings, bends and lenses are

normally operated at fixed field, thus the RF takes care
of restoring on average the energy lost, given appropriate
synchronous RF phase in the cavity device(s) in Zgoubi.
In pulsed regime as in booster injectors, the same process
of energy recovery on average by the RF can be simulated
as well.

III. BENCHMARKING METHOD

Benchmarking of the Monte Carlo SR in Zgoubi is
based on the monitoring of the only data that the code
can produce : particle coordinates, versus time or turn
number. Other quantities, such as motion excursions,
invariants, concentration ellipses (see appendix C), emit-
tance ratios, etc., are derived from these coordinates. A
sample of typical Zgoubi tracking data and of their ma-
nipulation can be found in appendix D. Various quanti-
ties out of Zgoubi are investigated in the present study,
they are made explicit in section III, the goal of the
benchmarking is to have their values compared with the-
oretical expectations.
This study will be limited obviously, to some of the

main aspects of the effects of synchrotron radiation on
beam dynamics. However Zgoubi data files correspond-
ing to the results produced in the following, in both cou-
pled and uncoupled optics cases, have been stored in the
“exemple” folder in the Zgoubi SourceForge development
site [2, 3], from where they may be downloaded in view
of further investigations.

Motion invariants

In the absence of perturbation by synchrotron radia-
tion, particle motion satisfies the following invariants,

ǫz = γz(s)z
2 + 2αz(s)zz

′ + βz(s)z
′2 Courant-Snyder

(7)

ǫl =
αEs
2Ωs

[(
∆E

Es

)2

+
1

Ω2
s

(
d

dt

∆E

Es

)2
]

longitudinal

(8)

(∆̂E)2 = (∆E)2 +
1

Ω2
s

(
d∆E

dt

)2

amplitude squared

(9)
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with z = x or y the horizontal or vertical transverse
coordinate, βz and αz = −β′

z/2 the Twiss parameters,
∆E = E − Es the energy offset, Es the reference en-
ergy, Ω2

s = −ω2
rev ηhRFeV̂ cosφs / 2πEs the synchrotron

angular frequency, with η = 1/γ2 − α ≈ −α the phase
slip factor, α the momentum compaction. hRF is the
RF harmonic, ωrev = 2π/Trev the revolution angular fre-

quency, V̂ the RF peak voltage, φs the synchronous phase
(numerical values considered for these latter quantities
in the benchmarking exercises are given in Tab. VI, ap-
pendix A).
Introducing the squared rms relative synchrotron am-

plitude σ2
∆̂E
E

≡ (∆̂E/Es)
2, Eqs. 8 and 9 lead to the fol-

lowing relationship

ǫl =
αEs
2Ωs

σ2
∆̂E
E

(10)

Note that in the present simulations, particle motion is
observed in a non-dispersive region in the cell (namely, at
the azimuth s = 0 in Fig. 9, appendix A), thus there is no
need to subtract the effect of the dispersion function on
the horizontal phase space coordinates, when evaluating
the emittances from the tracking. Note in addition that,
in the following, unless otherwise specified, emittances
are taken rms, unnormalized.
Under the effect of stochastic SR, individual invariants

can in general not be determined, averages over particle
ensembles are considered instead, they evolve according
to

dǫn
dt

= − ǫn
τn

+ Cn (11)

((∗) denotes the average over particles ; ǫn = ǫx, ǫy or
ǫl ; at fixed energy (storage ring) Cn is a constant, char-
acteristic of the quantum excitation, which will be made
explicit in due place) towards a stationary solution

ǫn,eq = Cn τn (12)

with damping time

τn =
Trev Es
Us Jn

(13)

with Jn=x,y,l the partition numbers, respectively horizon-
tal, vertical, longitudinal, which, in passing, satisfy (the
Robinson theorem)

Jx + Jy + Jl = 4 (14)

Note that the present benchmarking simulations con-
sider for simplicity a planar ring (parameters defined ap-
pendix A), with the effect that the vertical motion is
not subject to chromatic orbit fluctuations, by contrast
with the horizontal betatron motion which experiences
orbit fluctuations upon stochastic energy loss. It is thus
possible to compute the vertical invariant and follow its
smooth evolution turn by turn, from a single particle
tracking. This will be addressed specifically in the next
section.

IV. BEAM DYNAMICS SIMULATIONS

Based on the working hypotheses and methods dis-
cussed in section III, a series of multi-turn tracking sim-
ulations has been performed for the benchmarking of
Zgoubi synchrotron radiation Monte Carlo machinery.
The tracking simulations involve up to 3000 or 6000

particles depending on the exercise, up to several damp-
ing times. Several runs, however in rather limited num-
ber, have been performed in each case, with various ini-
tial conditions, random generator seeds, this will not be
detailed here. Due to the limited number of trials, er-
ror bars can be up to a few percent level, depending on
the parameters of concern, which is anyway considered
indicative of the correct behavior of Zgoubi in matter of
SR simulation and its effects.
In addition to Zgoubi tracking and to theoretical for-

mulæ, the light source code BETA [24] developed at
Saclay is used in this benchmarking, as a follow on of the
above mentioned initial work in Ref. [4]. Determination
of SR parameters in BETA is based on the computation
of the radiation integrals, from the lattice parameters.
Uncoupled motion is investigated first, the results are

summarized in the next three sections, in the form essen-
tially of figures and tables.

A. Damping of the vertical motion

The vertical motion is considered first, using single par-
ticle tracking following the planar ring hypotheses as dis-
cussed in section III. A 18 GeV particle is launched for
500 turns (10 damping times about) in the 16-cell ring.
Since there is no vertical dispersion, its vertical phase
space coordinates y, y′ are expected to show no stochastic
fluctuation, this is confirmed by the smoothly spiraling
phase space motion observed in Fig. 1. From these coor-
dinates the vertical invariant can be computed, namely,

ǫy = γyy
2 + 2αyyy

′ + βyy
′2 (15)

with local values of βy, αy as given in Tab. V, bottom
rows. The invariant ǫy is expected to damp exponentially
towards zero, with a damping time (Eq. 13 with Jy = 1)

τy =
Trev Es
Us

≈ 0.13114 ms, or
Es
Us

≈ 48.06 turns (16)

given Es = 18 GeV, Trev = 2.711216µs (a value indepen-
dent of the starting invariant and of the turn number,
at that level of accuracy, as confirmed by the tracking
outcomes), whereas (see Tab. III) theoretical energy loss
Us = 372.16 MeV/turn.
This is confirmed in Fig. 2 which shows smooth ex-

ponential damping of the vertical invariant on the one
hand, in four different cases of starting initial invariant
values yielding on the other hand the damping times in
accord with Eq. 16 in a 1.5 per mill range, practically
independent of the invariant value as expected.
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FIG. 1. Vertical phase space of four particles with different
starting invariants, 18 GeV (as detailed in Fig. 2 - motion
of particle 4 is too small to be visible here). Motions are
observed over 500 turns at s = 0 (s is defined in Fig. 9).
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FIG. 2. Exponential damping of the single-particle vertical
invariant ǫy, over 500 turns, 18 GeV (markers, from Zgoubi
tracking, matched using Eq. 15). Case of four particles with
starting invariants differing by six orders of magnitude, re-
spectively, from 1 to 4 : 103, 10, 10−1 and 10−3 nm. Cor-
responding damping times from a linear fit (solid lines) fall
within 130.33± 1.5h (ms).

Additional simulation results concerning the vertical
motion will be produced in the next section.

B. Emittance evolution

Multi-particle tracking is now investigated in either
one of the three planes, horizontal, vertical or longitudi-
nal. The tracking is carried out up to equilibrium, ǫn,eq,
i.e., a few damping times away. Four different energies
are considered : 6, 9, 12 and 18 GeV, kinetic.
For all three motions, transverse and longitudinal, the

evolution of the emittance with time or turn number, t,
is expected to satisfy

ǫn(t) = ǫn,eq

(
1− e−t/τn

)
+ ǫn,i e

−t/τn (n = x, y, or l)

(17)
with ǫn,i and ǫn,eq respectively the starting and equilib-
rium emittances.
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FIG. 3. Evolution of the longitudinal emittance with turn
number, starting with ǫl,i = 0, in four different cases of energy,
6, 9, 12 and 18 GeV. Markers are from tracking (not all turns
are shown. 5000 particles tracked per energy), solid lines are
from matching with the exponential law (Eq. 17).
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FIG. 4. Damping of the horizontal emittance with turn num-
ber, in four different cases of energy, 6, 9, 12 and 18 GeV.
Markers are from tracking (not all turns are shown), solid
lines are from matching with the exponential law (Eq. 17).

A case of longitudinal emittance growth is illustrated
in Fig. 3, starting with initial beam emittance ǫl,i = 0.
Horizontal emittance damping is illustrated in Fig. 4,
with initial emittance ǫx,i > ǫx,eq. Some aspects of these
Zgoubi tracking outcomes, their manipulation and unit
conversions are discussed in appendix D. These figures
show the good matching between the emittances com-
puted from Zgoubi tracking coordinates (5000 particles
for each energy), and Eq. 17.
The matching yielded the damping times τl, τx and

the equilibrium emittances ǫl,eq, ǫx,eq, as reported in
Tabs. II, III. Agreement between Zgoubi tracking in the
presence of stochastic SR on the one hand, and theoreti-
cal expectations on the other hand, is within 1-2 percent.
On the other hand, since these simulations consider

a planar ring, the vertical emittance damps to zero,
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TABLE II. Equilibrium quantities from tracking (“Zgoubi” column), at 6 GeV. These numerical values are the averages over
a few trials. Damping times are obtained by matching the turn-by-turn emittance with equations 17 or 18, as in Figs. 3, 4, 5.
Emittances are obtained by matching the turn-by-turn emittance with equation 17, as in Figs. 3, 4. Energy spreading and
bunch lengthening are also given, bottom two rows. Values in the “BETA” column are from the BETA light source code. Data
in the “Theory value” column stem from the formulæ in the rightmost column (with Cq = 55

32
√

3

~

m0c
≈ 3.83194× 10−13 m).

Units BETA Zgoubi Theory
code value formula

horizontal, τx ms 3.546 3.547 3.547 = TrevEs
UsJx

= 3Trev

2r0γ
3(I2 − I4)

turns 1308 1308 1308

vertical, τy ms 3.540 3.501 3.541 = TrevEs
UsJy

= 3Trev

2r0γ
3I2

turns 1306 1291 1306

longitudinal, τl ms 1.769 1.757 1.769 = TrevEs
UsJl

= 3Trev

2r0γ
3(2I2 + I4)

turns 652 648 652

horizontal, ǫx,eq nm.rad 6.843 6.83 6.831 =
Cqγ

2

Jx

I5
I2

iso−ρ
=

Cqγ
2

Jxρ
H̄

vertical, ǫy,eq pm - → 0 ≈0.15 = 13
55

Cq

JyI2

∮ βy

|ρ3|ds

longitudinal, ǫl,eq µeV.s - 193.5 191.8 = αEs
2Ωs

σ2

∆̂E
E

= αEs
Ωs

Cqγ
2

Jl ρ

rms dE/E,
σ∆E

E
= 1√

2
σ

∆̂E
E

10−3 1.03 1.023 1.028 =

√

Cq

Jlρ
γ

rms bunch length, σl mm - 9.40 9.308 = αc
Ωs

σ∆E
E

TABLE III. Dependence of the energy loss, of damping times, and of longitudinal and horizontal equilibrium emittances, on
the kinetic energy, as obtained from Zgoubi tracking, up to 10 damping times about. 2000 particles have been tracked for τy,
5000 for the horizontal and longitudinal quantities. Values between square brackets are the theoretical expectations, following
the formulæ displayed in Tabs. I, II.

Energy loss Us ǫl,eq σl τl ǫx,eq τx τy

(MeV/turn) (µeV.s) (mm) (ms) (nm.rad) (ms) (ms)

Scaling γ4 γ3/2 1/γ1/2 1/γ3 γ2 1/γ3 1/γ3

6 GeV 4.5956 [4.5956] 196 [192] 9.37 [9.309] 1.769 [1.769] 6.83 [6.83] 3.547 [3.546] 3.501 [3.540]

9 GeV 23.263 [23.263] 358 [352] 7.67 [7.601] 0.548 [0.524] 15.6 [15.37] 1.020 [1.051] 1.040 [1.049]

12 GeV 73.518 [73.518] 554 [542] 6.67 [6.582] 0.225 [0.221] 28.0 [27.32] 0.447 [0.443] 0.439 [0.443]

18 GeV 372.16 [372.16] 1022 [996] 5.42 [5.375] 0.068 [0.066] 65.7 [61.46] 0.132 [0.131] 0.130 [0.131]

ǫy,eq(t→ ∞) → 0, so yielding

ǫy(t) = ǫy,i e
−t/τy and ln(ǫy(t)) = ln(ǫy,i)−

t

τy
(18)

This produces the results displayed in Fig. 5 which shows
the smooth damping, as due to the absence of fluc-
tuations in the vertical motion in the absence of ver-
tical dispersion, for a 2000 particle bunch tracked for
10 damping times about, in the four different cases 6,
9, 12 and 18 GeV. A linear regression on the logarithmic
set of turn-by-turn emittances ǫy(t) yields the matching
straight line as displayed, for each energy, of which the
absolute value of the inverse slope is the damping time,
values as reported in Tab. III, rightmost column. The

agreement with theory is good, at percent level. The
phase space angle

φy = atan
αyy + βyy

′

y
(19)

is also computed, it is expected to feature a uniform
density distribution in the [−π, π] interval, which Fig. 6
shows to be fairly satisfied.
Uniform distributions as well, not worked out here, are

expected for the horizontal phase space angle φx, as well
as for the longitudinal angle

φl = atan
d∆E/dt

Ωs∆E
(20)
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FIG. 5. Smooth damping of the vertical emittance towards
zero, for 6, 9, 12 and 18 GeV, 2000 particles tracked. Markers
are from the tracking (not all turns are shown), straight lines
are from the exponential match (Eq. 18).
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FIG. 6. Histogram of the phase space angle (Eq. 19) over
105 particle phase space positions after a few damping time
tracking, beam energy 12 GeV.

Other possible benchmarking tests would concern the
beam centroids, expected to damp to zero with damp-
ing times 2τn, this has been checked to be satisfied, on
various cases, not reported here. The equilibrium distri-
bution of any of the phase space variables, x, x′, ∆E,
etc. is also a test of the correctness of the SR process
simulation, they have to match Gaussian densities, with
rms width for instance

σx(s) =

(
βx(s)

Cqγ2
Jxρ

H̄+D2
x(s)σ

2
∆E
E

)1/2

,

σ∆E
E

=
1√
2
σ

∆̂E
E

=

√
Cq
Jlρ

γ (21)

withDx(s) the local dispersion. Various of these rms val-
ues have been benchmarked, they are reported in Tab. II.
a. A note on damping without fluctuations : The

horizontal and longitudinal damping times might be ob-
tained with high accuracy by tracking a single particle
and by accounting for the energy loss on average, with-

out fluctuations, instead. A matching of the turn-by-
turn evolution of the invariant (respectively, Eq. 7 with

z = x and Eq. 8) would then provide the damping time
as the absolute value of the inverse slope of the straight
line representing ln(ǫn(turn)) (n = x or l), given that
ǫn,eq = 0 in the absence of stochasticity. However it is a
deliberate choice here to benchmark the code in realistic
situation, in the presence of stochastic photon emission
using the Monte Carlo machinery installed for that. The
counterpart is that it requires a two-variable matching :
damping time and final emittance. It is left to the inter-
ested user, as a further benchmarking test, to replace (in
the code) the random energy loss by the average energy
loss, and then verify the exponential damping of a sin-
gle particle invariant, in that special configuration of the
Zgoubi machinery.

C. Energy dependence

Benchmarking for energy dependence of equilibrium
emittances and damping times is summarized in Tab. III.
Expected γ-scaling laws are recalled (3rd row), as well as
energy loss (2nd column). Values between square brack-
ets are the expected theoretical ones. A limited number
of tracking trials have been realized in general for any of
these quantities, their average value is displayed in the
table. In spite of this limited statistics, the agreement is
rather satisfactory, within a few percent or better, better
in particular for the vertical motion which is not subject
to stochasticity. Differences with formulæ may have var-
ious origins, e.g., oscillations due to mis-centering of the
beam at injection, fluctuations with turn number due to
the limited number of particles, cumulative effects due to
the single recovery cavity (spiraling for instance) whereas
the theory formulæ assume a perfectly isomagnetic con-
figuration, all hypotheses to be confirmed.

V. COUPLED MOTION

A. Working hypotheses

The source of induced vertical emittance is a single
skew quadrupole (short enough that the geometry of the
lattice can be considered unchanged) introduced in a
dispersion free drift (s=0, Fig. 9). The difference res-
onance Qx − Qy = 25 is considered, the lattice is tuned
to Qx ≈ 36.2, Qy ≈ 11.2, see Fig. 10. Qx −Qy − 25 = ∆
is the distance of the unperturbed tunes to an integer,
with ∆ small.
A perturbative treatment of coupling in the presence

of synchrotron radiation can be found in Ref. [25]. A
coupling strength is defined,

κ =
1

4π

∮
Ks

√
βxβye

i(ψx−ψy−∆2πs/C) ds (22)

with Ks = 1
2Bρ

(
∂Bx
∂x

− ∂By
∂y

)
the skew quadrupole

strength, βx,y (respectively ψx,y ) the local uncoupled
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horizontal and vertical betatron functions (phase ad-
vances) at the skew quadrupole, C the ring circumference.
Note that the notation |C−| = 2|κ| is sometimes used in-
stead, entailing different forms for equations 24, 25 [25].
In the presence of a single skew quadrupole Eq. 22 yields
the approximation

|κ| ≈ |KsL|
4π

√
βxβy (23)

with KsL the integrated skew quadrupole strength.
The equilibrium beam emittances are expected to

evolve following (the earlier “eq” (equilibrium) subscript
has been dropped in the following, for simplicity)

ǫx = ǫx,0
2|κ|2 +∆2

4|κ|2 +∆2 , ǫy = ǫx,0
2|κ|2

4|κ|2 +∆2 (24)

and their ratio is expected to satisfy

ǫy
ǫx

=
|κ|2

|κ|2 +∆2/2
(25)

The sum of the transverse emittances is expected to be
invariant, equal to the natural horizontal emittance,

ǫx + ǫy = ǫx,0 (26)

B. Typical tracking simulation

A first numerical experiment is performed at 6 GeV.
The thin-lens skew quadrupole has an integrated gradient
of 0.06 T.
The working conditions are summarized in Tab. IV.

A 5000 particle bunch is tracked for 20000 turns, i.e.,
15 transverse emittance damping times about. Eq. C5
still holds in deriving emittances from the particle coor-
dinates, since the coupling does not change the horizontal
dispersion, and in particular both the skew quadrupole
and the observation point are in a non-dispersive straight.
The results of the tracking are displayed in Fig. 7. Match-
ing of the exponential decay towards the horizontal and
vertical emittances yields the three numerical values for
the equilibrium emittances in the bottom row in Tab. IV,
differing respectively by less than 1%, 5% and 4% from
the expected values, rightmost three columns in Tab. IV.

C. Emittance ratio and sum

This second exercise is performed at higher energy,
18 GeV (for the sake of computing speed). 5000 par-
ticle bunches are tracked for 800 turns, i.e., 16 emit-
tance damping times about. The tracking is iterated for
several of values of the coupling strength |κ| (by chang-
ing the skew quadrupole strength KsL), with fixed dis-
tance ∆ from the tune diagonal. The working conditions
are, paraxial, unperturbed : Qx = 36.175, Qy = 11.18,

 1
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FIG. 7. Evolution of horizontal and vertical emittances with
turn (not all turns are shown), in presence of coupling (left
vertical axis), and their ratio (right axis). Markers are from
Zgoubi tracking. An exponential fit (solid curves) yields the
asymptotic values in Tab. IV, bottom row.

βx = 26.5, βy = 11.4. Compared to the previous exercise,
the tunes have been moved to a region free of non-linear
coupling resonance, see appendix A3 and Fig. 10.
A summary of the tracking results regarding equa-

tions 25, 26 is given in Fig. 8. Tracking data (mark-
ers in the figure) are superimposed with these analyti-
cal expectations. Up to a strong |κ|/∆ ≈ 5, (ǫx + ǫy)
falls within ±5% of ǫx,0 ≈ 65 nm.rad. Beyond that limit,
(ǫx+ ǫy)/ǫx,0 increases, the reason for that would require
further investigation, however, as opposed to the per-
turbative hypothesis above, strong coupling changes the
optical functions and tunes [25, 26], the latter are moved
away from one another (that effect might be quantified
from a Fourier analysis of Zgoubi tracking data).
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FIG. 8. Left vertical scale : evolution of the ratio of vertical
to horizontal equilibrium emittances with coupling strength,
from Zgoubi tracking (empty red markers), and their inter-
polation using equation 25 (red “fit” curve). Right scale :
(ǫx + ǫy)/ǫx,0 ratio at equilibrium as a function of coupling
strength, from tracking (solid blue markers) and their average
value (horizontal dashed blue line).



9

TABLE IV. Coupling simulations at 6 GeV. The left two columns give the unperturbed tunes, the third one gives the distance
to an integer. The rightmost four columns give respectively the expected uncoupled natural emittance ǫx,0 (from the formula
in Tab. II), the expected equilibrium emittances (Eq. 24) and their ratio (Eq. 25). The equilibrium emittances and their ratio
from an exponential fit of the tracking data (as displayed in Fig. 7) are given in the bottom row, rightmost four columns, for
comparison.

∆ = Equilibrium emittances Ratio
Qx Qy |Qx −Qy − 25| |KsL| βx βy |κ| ǫx,0 ǫx ǫy ǫy/ǫx

(m−1) (m) (m) (nm.rad)

36.203 11.198 5 10−3 3 10−3 26.6 11.3 4.2 10−3 6.83 4.34 2.49 0.575
6.83 4.31 2.38 0.557

VI. COMMENTS, CONCLUSIONS

Stepwise ray-tracing of 6-D motion in Zgoubi in pres-
ence of synchrotron radiation has been investigated, in-
cluding conditions of coupled optics. Numerical values
have been put on a number of theoretical quantities
as energy loss, damping times, equilibrium emittances,
emittance ratio, and appear to yield good agreement,
so bringing confidence in the correctness of the Monte
Carlo SR machinery installation on the one hand, and
on the accuracy of the numerical tracking in presence of
SR and its stochastic effects on beam dynamics, on the
other hand. All the exercises discussed here can be re-
peated using the input data files stored in the Zgoubi
sourceForge development site [3].

A conclusion that can be drawn from the present in-
vestigations is that no unexpected result was obtained,
neither any show stopper faced, all the simulations un-
dertaken have given expected data with reasonable accu-
racy. CPU times are reasonable, 1000 turns per minute
for one particle, in the 812 meter ring - for an arbitrary
number of particles on a CPU cluster.

The computational material for the investigation of SR
induced spin diffusion combines spin tracking capabili-
ties in Zgoubi, together with beam dynamics effects of
SR as addressed here. It is thus operational, benchmark-
ing against theory will essentially be a matter of adding
spin dynamics to the tracking simulations in the pres-
ence of stochastic energy loss. In recirculating rings such
as eRHIC, the reduced number of turns (of the order of
10) and the CPU speed achieved will allow statistical es-
timates on electron beam polarization and perturbative
effects based on tens of thousands of particles.

APPENDIX

Appendix A: Chasman-Green test lattice

1. Properties

A Chasman-Green cell (aka double-bend achromat,
DBA) is considered in the present benchmarking study,
for the reason that a number of quantities relevant to

beam dynamics under SR effects can be derived analyti-
cally in that case, as the chromatic invariant H, equilib-
rium emittances, damping times, etc.
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35

  s (m) 

Q   = 36.2
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  x 
  y   β  

            β 
  x  

      y  

D  x

FIG. 9. Optical functions (in meters, left vertical scale) along
the Chasman-Green cell.

A variant of the ESRF super-cell (a double-DBA) is
used, a storage ring is built from 16 such super-cells,
whereas various storage energies will be considered, taken
in the range 6 GeV (actual ESRF energy) to 18 GeV.

Tab. V gives the general optical parameters of the lat-
tice and ring, the optical functions are displayed in Fig. 9.

2. RF conditions

SR losses in bends over the ring circumference amount
to

Us =
Cγ
2π

β3E4
s I2 ≈ Cγ

2π
E4
s I2

iso−ρ
= Cγ

E4
s

ρ

or, ultra-relativistic electrons,

Us[keV/turn] ≈ 88.463
E4
s [GeV ]

ρ[m]

yielding for instance

Us ≈ 4.6 MeV/turn at 6 GeV, 2.45 MW power
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TABLE V. Ring parameters, as set in the tracking simula-
tions, and other numerical data used in the main text as ob-
tained from Zgoubi tracking. Corrected chromaticities are
accounted for in the present benchmarking simulations.

1 Cell length (m) 50.800
2 Number of cells 16
3 Circumference, C = 2πR (m) 812.800
4 momentum compaction, α (10−4) 3.098
5 Qx 36.20
6 Qy 11.20
7 Q’x, Q’y, natural -114, -34.5
8 Q’x, Q’y, corrected +0.035, -0.012

Bend parameters :

9 Nb. of bends 64
10 Bend deviation, θ (rad) 2π/64
11 Bend length, L (m) 2.45
12 Curvature radius, ρ (m) 24.95549

Periodic functions at non-dispersive dipole end :

13 β0 (m) 3.415
14 α0 2.073

Periodic functions at s=0 :

15 βx, βy (m) 26.6088, 11.3027
16 αx, αy 0

TABLE VI. RF conditions in Zgoubi simulations, longitudinal
parameters.

Revolution time, Trev (10−6s) 2.71122
Frequency, frf = ωrf/2π (MHz) 110.651
Harmonic, hRF 300
Synchronous phase, ϕs (deg) 30

Peak voltage, V̂ (MV) 9.19123×
(

Es[GeV ]
6.000511

)4

Synchrotron tune, Qs 0.004430×
(

Es[GeV ]
6.000511

)3/2

Numerical values, for 6 GeV electrons, are given in Tab. I.
The radiated energy is restored by the RF system. A
single cavity is accounted for in the present simulations,
with parameters as listed in Tab. VI.

3. Coupled optics

The precise positioning of the working point is not a
concern in the non-coupled numerical experiments, first
part of the note, since there is no source of non-linear cou-
pling excitation, apart from kinematic terms present by
nature in the Zgoubi method, however negligible given
the paraxial working conditions. That working point
happens to be located at (A), Fig. 10.
By contrast, in the case of the coupled optics the work-

ing point is located in a resonance line free diamond,
point (B) in Fig. 10. This is in order to fulfill the coupling
formalism hypothesis of an isolated linear coupling res-

onance. Chromaticities are below 0.1 so ensuring small
footprint well within the resonance-free diamond.
Note that it has been observed that, performing simi-

lar coupling simulations with working point (A) instead,
straddling sum coupling resonance lines, jeopardizes the
invariance of ǫx + ǫy when κ/∆ & 0.5, to be compared
to similar effect for κ/∆ & 5 instead, with working point
(B),

36.16 36.18 36.2 36.22 

11.17

11.18

11.19

11.2

11.21

11.22

11.23                             

      Q             x    

Q    y

    (A)    

(B)    

FIG. 10. Working points. (A) uncoupled case. (B) cou-
pled case, away from coupling resonance lines mQx +
nQy = p, p integer, represented up to order |m|+ |n| =
10 here.

Appendix B: Numerical convergence
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FIG. 11. Convergence (running average) of the energy loss
Us towards 4.5956 MeV/turn (lower curve bundle, left vertical
scale), and of the critical frequency ǫc towards 19.205 keV (top
curve bundle, right vertical scale), as a function the number
of passes of a 3000 particle batch, through the 2.45 m cell
dipole, at 6 GeV.

In order to perform a preliminary convergence test
on the Monte Carlo SR loss installation in Zgoubi, a
3000 particle batch is launched for a large number of
passes through a single dipole of the Chasman Green
cell. The dipole is 2.45 m long (Tab. V), the test is
performed at 6 GeV kinetic energy. Fig. 11 displays the
results of several trials, involving three different sets of
random generator seeds (for the Monte Carlo SR simula-
tions), various integration step sizes in the bend (5 mm
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to 10 cm). It shows that the average energy loss Us gets
close to its asymptotic value in a few tens of once-through
passes across the dipole. The average of the critical en-
ergy ǫc is reached even faster.

Appendix C: Concentration ellipses

Several comparisons discussed in this report lean on
the concentration ellipses, which are a standard product
out of Zgoubi data treatment tools, such as its interactive
interface zpop [2]. In order to make things clear, we recall
briefly the way they are computed in the code, from the
coordinates of the particles.
Let zi(s), z

′
i(s) be the phase space coordinates of i =

1, n particles observed at some azimuth s, at some turn
around the ring. The second moments of the particle
distribution are

z2(s) =
1

n

n∑

i=1

(zi(s)− z(s))2

zz′(s) =
1

n

n∑

i=1

(zi(s)− z(s))(z′i(s)− z′(s)) (C1)

z′2(s) =
1

n

n∑

i=1

(z′i(s)− z′(s))2

From these, a concentration ellipse (CE) is drawn, of
surface Sz(s) and equation

γc(s)z
2 + 2αc(s)zz

′ + βc(s)z
′2 = Sz(s)/π (C2)

Noting ∆ = z2(s) z′2(s)− zz′2(s), the ellipse parameters
write

γc(s) = z′2(s)/
√
∆, αc(s) = −zz′(s)/

√
∆, (C3)

βc(s) = z2(s)/
√
∆, Sz(s) = 4π

√
∆

With these conventions, the rms values of z and z′ pro-
jections satisfy

σz =
√
βzSz/π and σz′ =

√
γzSz/π (C4)

In addition, in the first order formalism, given that the
observation point in these simulations is taken in a non-
dispersive region (s = 0 in Fig. 9), one has, by compari-
son with Eq. 7,

Sz(s)/π ≡ ǫz (C5)

Appendix D: Sample Zgoubi tracking outcomes

Typical data out of Zgoubi tracking and their ma-
nipulation are discussed here. The energy considered is
6 GeV, 2000 particles were tracked and yielded the hori-
zontal and longitudinal equilibrium emittances and other
bunch length values in Tab. II.
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FIG. 12. Energy spread build-up with turn toward its equi-
librium value, at 6 GeV.
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FIG. 13. Longitudinal phase space portrait at 6 GeV, turn
number 3000, in Zgoubi tracking coordinates RF phase φ and
dp/p. The surface of the rms ellipse for the 2000 particles,
in these coordinates, is 22 10−6 π rad.

Figure 12 shows a plot of the momentum spread dp/p
which is one of the particle coordinates in Zgoubi. Start-
ing from zero emittance, the momentum spread builds up
with turns, toward the theoretical equilibrium rms value

σ∆E
E

=

√
Cq
Jlρ

γ. The RF frequency happens to have a

slight offset, so causing the visible beam centroid oscil-
lation, which damps toward its equilibrium value (a few
10−4) in a time twice the emittance damping tine.
Figure 13 shows the longitudinal phase space portrait,

taken at 5 damping times about (region of turn number
3000) where it has grown close to its asymptotic shape.
By contrast the equilibrium quantities in Tabs. II, III
are taken after 2 104 turns. Together with dp/p, the RF
phase φ is part of the particle data saved during Zgoubi
tracking. Other quantities as emittance in various pos-
sible units, bunch length, etc., are derived from these.
The projected coordinate densities in the figure, respec-
tively RF phase φ (horizontal axis) and dp/p (vertical



12

axis) yield the following rms values,

σ∆E
E

= 1.02 10−3, σ∆φ = 21.3mrad

The phase extent can be converted to bunch length, as
follows,

σl =
cσ∆φ
2πfrf

= 9.2mm

with c the speed of light and given the RF frequency value
frf = 110.7MHz (Tab. VI). Given a factor of 1/2πfrf =
1.44 10−9 for the phase, and of p = βE ≈ E = 6109 eV
for the energy, the phase-dp/p emittance ǫl = 22 10−6 rad
so converts into 190 10−6 eV.s.
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F. Méot, A theory of low frequency, far-field synchrotron
radiation, Particle Accelerators, Vol. 62 (1999), pp. 215-
239.

[18] L. Ponce, R. Jung, F. Méot, LHC proton beam diagnos-
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