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Abstract.  

Space charge effects play significant role in modern-day accelerators. These effects 
frequently constrain attainable beam parameters in an accelerator - or - in an accelerator 
chain. They also could limit the luminosity of hadron colliders operating either at low 
energies or with a sub-TeV high brightness hadron beams. The later is applied for 
strongly cooled proton and ion beams in eRHIC – the proposed future electron-ion 
collider at Brookhaven National Laboratory [1].  

A number of schemes for compensating space charge effects in a coasting (e.g. 
continuous) hadron beam were proposed and some of them had been tested. Using a 
proper transverse profile of the electron beam (or plasma column) for a coasting beam 
would compensate both the tune shift and the tune spread in the hadron beam. But all of 
these methods do not address the issue of tune spread compensation of a bunched hadron 
beam, e.g. the tune shift dependence on the longitudinal position inside the bunch. 

In this paper we propose and evaluate a novel idea of using a co-propagating electron 
bunch with miss-matched longitudinal velocity to compensate the space charge induced 
tune-shift and tune spread. We present a number of practical examples of such system. 

 

I. Introduction.  

Space charge effects are known in accelerator physics for a half of the century. There 
is extensive literature [2-22] (with an excellent and concise review by Zotter in [23]) 
describing space charge affect on the beam’s quality and stability. Nonlinear space-
charge force induces an irreducible transverse tune spread, e.g. the tune dependence on 
both the hadron’s1 longitudinal position inside the bunch, z , and the amplitude of the 
transverse oscillations.  

It is well known that space charge effects fall a high power of the beam’s relativistic 
factor: 

                                                        
1 Here we are considering only a positively charge particles whose space charge effects can be compensated 
using negatively charged electrons. The case of negatively charged particles, including antiprotons and 
negatively charged ion, would require positively charged particles for such compensation. Using position, 
proton or ion beams for compensating space charge effects in the negatively charged beams, while 
theoretically possible, is, most likely, impractical. 
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ΔQsc ≈ −
Z 2rp

A

No

4πβh
2γ 3ε

C

2πσ z

     (1) 

where C  is the ring circumference, Z  is the charge and A  is the atomic number of the 
hadron (e.g. an ion, for proton Z = A = 1), rp = e2 / mpc

2  is the classical radius of the 

proton, γ 2 =1/ (1−β 2 ) is the relativistic factor of hadron beam, No  is number of hadrons 

in the bunch with RMS duration ofσ z , and ε  it the transverse emittance of the beam. 

While space charge effects exist in any charged beam, they have stronger 
implications for hadron beams.  Hadrons become ultra-relativistic at much higher 
energies and also travel longer pass in accelerators, compared with their lepton 
counterpart, to become ultra-relativistic. 

One of the most important effects is the tune spread induced by intrinsically nonlinear 
space charge force2. General expression of the tune spread is given in Appendix A. Since 
the compensation scheme we are presenting here does not depend on the details of the 
transverse beam distribution, e.g. similarly to compensation techniques suggested for 
coasting beams, the transverse profile of the electron beam (or a column) should 
compensate both the tune shift and its dependence on the amplitudes of the transverse 
oscillations [24-28]. Naturally the maximum tune shift is experienced by the particles in 
the center of the beam, while the particles with large amplitude of oscillations have a 
smaller value of the tune shift. The overall tune spread is determined by its value for the 
center particles. 

Thus, for simplicity we will consider here a hadron beam with equal transverse 
emittancesε x = ε y = ε , whose tune shifts are given by (A20): 

δQx,y = δQsc(z) ⋅ fx ,y;

δQsc(z) = − C

4πε
1

β 2γ 3

Z 2rp

A
⋅ No

2πσ z

⋅e
− z2

2σ z
2

;

fx =
2

1+ βy /βx

; fy =
2

1+ βx / βy

.

   (2) 

Since longitudinal motion of hadrons is usually very slow (e.g. Qs <<Qx,y ), the tune of 

the particle depends not only on the amplitudes (actions) of the transverse oscillations, 
but also on longitudinal the location within the bunch. 

One practically important feature of the space charge effects is a very strong 
dependence on the relativistic factor γ : δQsc ∝γ −3 / (1−γ −2 ). While the power one of the 

γ  naturally comes from increasing rigidity of the beam, the γ −2 comes from effective 
canceling of the forces from electric and magnetic fields induced by the beam (details are 
in Appendix A):                                                         
2 In this paper, for compactness, we assume a Gaussian longitudinal distribution of particles. Naturally, the 
treatment presented in this paper can be extended to other types of longitudinal distributions.  
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F⊥ = eZ


E⊥ + βo ẑ ×


B⊥ ( ) = eZ ⋅


E⊥ 1− βo

2( ) ≡ eZ ⋅

E⊥

γ 2
.  (3) 

 

 
Fig. 1. A generic layout of the space charge compensator interaction region. Electron beam 
merges with the hadron beam, co-propagates through straight section, and then extracted. 

A number of practical schemes for space-charge tune shift and tune spread 
compensation using an electron beam colliding with hadron beam (e.g. an electron lens) 
or an electron column induced in a residual gas [24-28] were suggested. The tune shift 
given by the colliding beam does not suffer from γ h

−2  cancelation. Wise versa - it is 
amplified. For an electron lens the interaction length of L , the tune shift is: 

δQx ,yel =
Z

A

1

βhγ h

rp

4πσ e
2 ⋅

Ie

ecβe

1+ βe
2( ) ⋅L βx.y ;

L βx .y ≡ βx.y dz
0

L

 ;

   (4) 

where βe = ve / c  is the normalized velocity of electron beam3. Comparing eqs. (2) and 
(4) one can conclude that electron beam current  

Ie =
C

2γ h
2L

⋅ 2βe

βh 1+ βe
2( ) ⋅

σ e
2

βx .y εh

⋅ I p ∝
C

2γ h
2L

⋅ βe

βh

⋅⋅I p

I p =
ecZNo

2πσ z

;
σ e

2

βx .y εh

~ 1.

   (5) 

can be used to compensate for the space charge tune shift. Typically the interaction 
length is significantly smaller than the ring circumference (to be exact, it is always 
smaller), e.g. η = L / C <<1. This shortcoming can be compensated by large relativistic 

                                                        
3 We would like to point to a possible confusion caused by a multiple usage of symbol β . Unfortunately it 

is unavoidable when one has to use both the velocities β = v / c  and the lattice functions βx ,y  in the same 

paper. 
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factors 2γ h
2βh / βe >>1. It means that the electron current in such electron lens can be 

modest, and frequently, comparable with the hadron beam current. 

As explained in [24,28], selecting a proper transverse distribution of electron beam, 
one can match the space charge tune shift dependence on the transverse amplitudes. The 
only, but important, short-coming of this method is that the tune-shift introduced by the 
electron lens (or the column) is identical for all particles independent on the longitudinal 
location inside the bunch. 

In a bunched beam, however, the space-charge tune shift depends on the hadron’s 
position within the hadron bunch, z . Thus, the z-dependence of the tune shift cannot be 
compensated using an electron lens or an electron column. Thus, for a bunched beam, 
these schemes could, at best, reduce the space-charge tune spread by a half, e.g. by 
compensating it at the half of the peak value at z=0.  

 Using a co-propagating electron beam with the same relativistic velocity βe = βh

(as in electron cooling schemes) and the same longitudinal distribution offers an 
opportunity of compensating both the transverse and longitudinal dependence of the 
space charge field. Unfortunately, the compensating beam suffers from γ h

−2  cancelation, 
and such scheme would require a very large electron beam current: 

Ie ≈
C

L
⋅ I p >> I p.    (6) 

This unfavorable scaling makes such a scheme impractical, especially for hadron beams 
in large colliders. For example, eRHIC would operating hadron beams with peak current 
~ 10 A (and duration of 0.4 nsec). Using a 30 m of 3.8 km RHIC circumference for such 
space charge compensator would require an electron bunch with peak current ~ 1.2 kA 
and the bunch charge ~ 4,000 nC. Such e-beam simply does not exist. 

We propose to use the co-propagating scheme, but with mismatched relativistic 
factors of the two beams. Such mode provides for a possibility to diminish the reduction 
factor while keeping the slippage between the beams under control.  

 

II. The idea of the method.  

The idea of the proposed method is based on a simple observation that the relativistic 
canceling is proportional to γ 2 , while the velocity of particles weakly depends of γ  for 
γ > 2 . To be exact, we consider a co-propagating relativistic e-beam having nearly 
identical bunch profile as the hadrons but having a different relativistic factor.  

Let’s consider first a simple case of both beams being round and relativistic, e.g. both 
beam velocities are close to the speed of light. Hence, the slippage of the e-beam with the 
respect to the hadron beam is rather small compared with the length of the interaction 
section, L: 

Δz = ve − vh( )τ = L

βh

βe − βh( ) ≅ L

2

1

γ h
2 −

1

γ e
2







   (7) 
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For long bunches, the fields from the both beams can be easily calculated using the Gauss 
law: 

Bhθ (r, z, s) =
2Io z( )

cr
fh (x, s)

0

r

 xdx; Ehr (r, z,s) = − Bhθ (r,z, s)

βh

;  

Beθ (r, z, s) =
2Ie z( )

cr
fe(x,s)

0

r

 xdx; Eer (r, z, s) = − Beθ (r, z,s)

βe

; 

where fe,h (r, s) are transverse distributions of the beams. The force acting on the hadron 

from the e-beam is: 

Fr = Ze − Beθ (r, z,s)

βe

+ βhBeθ (r, z,s)





= − Ze

βe

Beθ (r,z, s) ⋅ 1− βeβh( )

= −Ze
2Ie z( )

cr
fe(x, s)

0

r

 xdx ⋅
1− 1−γ e

−2( ) 1−γ h
−2( )

1−γ e
−2( )

  (8) 

For ultra-relativistic particles (8) becomes: 

Fr ≅ −Ze
Ie z( )
cr

fe(x, s)
0

r

 xdx ⋅ 1

γ e
2 +

1

γ h
2







   (9) 

while self-action gives: 

Fr  sc ≅ Ze
Ih z( )
cr

fh (x, s)
0

r

 xdx ⋅ 2

γ h
2

.    (10) 

Thus, in the case of unequal velocities, the relativistic γ h
−2  cancelation is replaces by

γ e
−2 +γ h

−2( ) / 2. 

Since using low energy electron beams is economically favorable, let’s assume that 
relativistic factor of hadron is significantly larger than that of the e-beam: 

γ h
2 >> γ e

2

. 

This assumption makes 
1

γ e
2 >> 1

γ h
2

and simplifies (7) and (9): 

Fhr ≅ −Ze
2Ih z( )
γ h

2cr
fh (x, s)

0

r

 xdx;

Fer ≅ −Ze
Ie z( )
γ e

2cr
fe(x, s)

0

r

 xdx;

Δz ≅ − L

2γ e
2 .

     (11) 
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Let’s assume the e-beam has the same transverse shape as the hadron beam. Then, as 
follows from eq. (11), compensating for the space charge effects accumulated by the 
hadron beam in the ring with circumference C, we will need the electron beam current of 
interacting with the hadrons in a straight section4 with length L to be: 

Ie ≅ −2Ih ⋅
γ e

2

γ h
2 ⋅

C

L
     (12) 

Let’s further assume that it could slip for one RMS bunch-length of the proton bunch (see 
practical examples in following Section) during the interaction. e.g. the length of 
interaction section is: 

L ~ 2γ 2
eσ z .      (13) 

Then, the ratio between the beam currents becomes independent of the electron’s energy: 

Ie

Ih

≅ C

σ zγ h
2

,      (14) 

and the later should be determined by a practical matters. Naturally, there can be Ni ≥1 
space charge compensation sections5, which proportionally reduce the required e-beam 
current. 

Ie

Ih

≅ C

Niσ zγh
2

,      (14’) 

For example, γ h = 100and RHIC circumference C=3.8 km the required ratio is: 

Ie

Ih

~
1

Ni

⋅ 1

σ z (nsec)
         (15) 

It means that electron beam peak current can of the same order at that of the hadrons. 

 

III. The method.  

Let’s now consider the method for finite velocities without any limitations. Let’s consider 
the electron beam having longitudinal profile determined by it current 

Ie t − s

ve







 .     (16) 

It merges with the hadron beam, co-propagates along the interaction region from s=0 and 
taken out at s=L. A hadron passes the interaction region as follows: 

                                                        
4 It is unlikely that the same magnets can be used to equally bend trajectories of electrons 
and hadrons when γ h > γ e . 
5 As we discuss later, it actually can be even beneficial. 
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s = vh ⋅ t − to( ); t = to +
s

vh

;    (17) 

and is affected by the electron beam current of  

Ie to +
s

vh

− s

ve







 .     (18) 

The integrated effect is expressed by the following expression: 

L ⋅ Ie t( ) = Ie t + s

vh

− s

ve







ds
o

L

 ≡ c
βeβh

βh − βe

Ie t +ζ − Δt( )dζ
o

Δt

   (19) 

with the slippage given by 

cΔt = L
βh − βe

βeβh

.     (20)  

First, let’s assess the value of allowable slippage by deconvolving equation (19) 
assuming that the shape of Ie t( )  repeats that to the hadron beam Ih t( ), e.g.: 

Ie t( )
Ie 0( ) =

Ih t( )
Ih 0( ) = q t( )      (21)  

Thus we will require that 

Ie t − Δt +ζ( )
0

Δt

 dζ = Io ⋅q t( )     (21)  

with value of Io  to be chosen to compensate the tune shift for the hadron in the center of 
the bunch. Any deviation of e-bunch the shape from (21) will result in error of 
compensating tune for the hadrons. In Appendix D we show how to deconvolving  

g t +ζ( )
0

Δt

 dζ = q(t); Ie t − Δt( ) = Iog t( );     (22) 

to get a simple two independent solutions: 

g+ t( ) = − ′q (t + mΔt)
m=0

∞

 ;

g− t( ) = + ′q (z − mΔt)
m=1

∞

 .

    (23) 

It is obvious observation a linear combination of the solutions (23) 

gα t( ) = αg+ t( ) + 1−α( )g− t( )   
is a solution of (22). It is likely that g1/2 = g+ + g−( ) / 2  can be of practical interest.  
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We also shown in Appendix D that for a rather general physics assumptions these 
functions converge to zero at one of the infinities: 

g+ z( )z→+∞ → 0; g− z( )z→−∞ → 0     (24) 

It is not necessarily true about the other sign.  

While these mathematical properties of the solutions are mostly of academic interest, 
there is an additional, and very practical, issue.  By definition in eq. (21) q(t) is non-

negative function: q(t) ≥ 0. Similarly, the sign of the e-beam current and Ie t( ) ≤ 0 . Thus, 

any practical Deconvolution of (22) cannot change the sign, and choosing Io < 0 requires 

g t( )  being a positive function:  

g(t) ≥ 0.     (25) 

The natural parameter determining behavior and “positivity” of g± (t) is determined by 
the ratio between the slippage, Δt , and the RMS length of the hadron bunch, σ t ,: 

τ = Δt

σ t

.     (26) 

In storage rings longitudinal distribution is frequently described by a Gaussian function: 

q(t) = exp − t 2

2σ t
2









 .     (27) 

We study this distribution in detail (see Appendix D) to answer following questions: 

(a) at what values of τ  deconvolution functions remain positively defined;  

(b) what error is accumulated in the convolution if we fit a reasonable positively 
defined function to approximate g± (t) for large values of τ . 

The following is a short summary of out findings. First, for τ ≤1 , both g± (t) 
solutions behave and converge very well within the typical physical aperture (in our case 
we used ± 5 RMS bunch lengths). Deconvolutions g± (t) are nearly identical  (see Fig. 2) 
and positively defined in the interval t /σ t ∈{−5,5}  For τ = 0.5, the difference between 

g± (t)  is within ±10−15 g± (0)  and is likely determined by the computer accuracy. For 

τ =1 , the difference between g± (t)  is less than ±10−7 g± (0)  and g± (5σ t ) ≅ 1.8 ⋅10−5 , 

g± (−5σ t ) ≅ 9.5 ⋅10−8 . It simply means that for practical purposes the compensating error 
will be defined not by accuracy the deconvolution function, but by other practical means. 
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Fig. 2. Graphs of g± (t) for deconvolution for Gaussian distribution (27) with τ =1. One should 

notice that both functions g± (t) are practically indistinguishable. 

Second, for values of τ  exceeding unity, the situation changes rather rapidly and when 
for τ >1.75  a very well defined oscillating tails with amplitude comparable with the 
central peak. Naturally both g± (t) are no longer positively defined. Fig. 3 and 4 visualize 
these features. 

  (a)                (b) 

 

 

Fig. 3. 3D graphs of deconvolution function g+  for Gaussian distribution (27) at function of the 

time and slippage. (a) is the top view with horizontal axis being t /σ t  {-5.5}, the vertical axis 

being g+ (t), and the third axis used for the slippage τ = Δt /σ t . The vertical axis is clipped at 

zero to clearly indicate where g+  becomes negative. (b) the same graph seen from the bottom to 

clearly indicate the areas of g+ < 0 . 
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         (a)           (b) 

   

      (c) 

 

Fig. 4. 3D graphs of g+  (a), g−  (b) and g1/2  (c) deconvolution functions for a Gaussian 

distribution (27) at function of the time for four values of τ = Δt /σ t : 1 – dark blue, 1.25 – 
magenta, 1.5 – yellow/grey, 1.75 – green and 2 – light blue. 

Practical conclusion form this studies is that τ = 1.5  is a natural boundary, where a 
g1/2  deconvolution (see Fig.5) working very well. It provides a relative convolution error 
of less than 10-3 (to be exact its is limited to about 5x10-4) and, therefore, would not 
represent practical accuracy limit. For example, a bunch to bunch variation in a hadron 
beam intensity most likely will exceed relative level of 10-3. 

 

Fig. 5. Clipped graph of g1/2  for a case of τ = 1.5 . Keeping the shape of g1/2  from t = −3σ t  to 

t = 4σ t  provides for a nearly perfect convolution (22).  
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As shown in Appendix D, even for τ = 2  we could find a positive function (by fitting 
g), which could compensate 95% of the tune spread in the beam. Nevertheless, for the 
rest of the paper we will use  as a practical limit for the slippage. 

Since, we proven that for a smooth Gaussian-line longitudinal distribution of the 
hadron bunch we can nearly perfectly compensate the space-charge induced tune spread, 
the question is what electron beam current is required to do this? 

 

Issues related to the transverse matching of the nonlinear tune shift induced by the 
space charge in the ring and that induced by the electron beam in the compensator are 
discussed in Appendices A, B and C. Here, for simplicity, let’s further consider round 
beam space charge effects and set fx ,y = 1 in eq. (2)6. In this case, the space charge tune 

shift accumulated by hadrons along the ring circumference C should be compensated by 
that accumulated in the interaction with electrons:  

δQsc = − C

4πε
1

βh
3γ h

3

Zrp

A
⋅ Ih

ec
= −δQsce =

Lc

8πε
1

βhγ h

1− βeβh

βe

Zrp

A
⋅ Ie

ec
  (28) 

This, the requirement on the compensating beam current: 

Lc

βe

Ie ⋅ 1− βeβh( ) = IhC
1− β 2

h( )
βh

→ Ie

Ih

= − C

Lc

βe

βh

1− β 2
h( )

1− βeβh( )   (29) 

depends on the length of the compensator section, Lc . The length  could be limited 
either by the allowable slippage, as we discussed above, cΔt ≤1.5σ z / βh :  

Lmax ≤ cΔtmax

βeβh

βh − βe

≈
1.5σ zβe

βh − βe

;     (30) 

or by practical limitations of the accelerator. Combined with the limitation on the 
slippage gives: 

Ie

Ih

= C

γ 2
hβ

2
h 1− βeβh( )max

βe − βh

Δtc
,
βeβh

Lc









.    (31) 

As we discussed in previous sections, there is no benefits of having βe ≥ βh . Hence, for 

βe < βh  eq. (23) becomes: 

Ie

Ih

= C

γ 2
hβ

2
h

max
βh − βe

cΔt 1− βeβh( ) ,
βeβh

Lc 1− βeβh( )











.   (32) 

                                                        
6 Compensation criteria do not depend on the details of the transverse matching. The later is required to 
compensate correctly space charge tune spreads in horizontal and vertical directions, as well as to 
approximate the space charge tune shift dependences on the transverse actions Ix,y .  

τ = 1.5

Lc
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To minimize the required electron beam current we can find minimum of the right-

hand-side in eq. (32). Let’s us note, that 
βh − βe

1− βeβh

= βh

1− βe / βh

1− βeβh

 monotonically reduces 

and 
βhβe

1− βeβh

 monotonically increases as function of βe  at the interval 0 ≤ βe ≤ βh . Thus 

the minimum in eq. (32) is reached at  

βe = βc =
βh

1+ βh

cΔt
Lc

;
     

(33) 
 

This yields a simple expression for the required compensating current: 

Ie

Ih

= − C

Lc +γ
2
hhβh ⋅cΔt

.     (34) 

In a case that there is more than one compensator Nc ≥1, the required e-beam current 
can be reduced proportionally: 

Ie

Ih

≅ 1

Nc

C

Lc +γ
2
hhβh ⋅cΔt

     (35) 

Having more than one compensator may have additional advantages: it will distribute 
compensation around the ring. The later will bring compensators closer to the source and 
naturally will provide more stable beam (see discussions at the end of the paper).  

According to eq. (35) using multiple compensators with the given total length of 

L = NcLc = ηC     (36) 

there required e-beam would be: 

Ie

Ih

≅ 1

η + Nc ⋅γ
2
hhβh ⋅

cΔt
C

.     (37) 

 
Fig. 6. A sketch of one electron source supporting four SC compensating sections. Each electron 
bunch (red) merges and co-propagate with the hadron beam in the first straight section. Then it 
sent through a delay loop to merge with the following hadron bunch. The process then repeated as 
needed (three time in this figure).   
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Thus, it is beneficial to split compensation length into as many as practically manageable 
and possible compensators. As follows from (33) it will also lower the optimal electron 
beam energy.  

Such splitting will not necessarily lead to the increase of the electron beam sources 
and collector. Hadron storage rings usually operate with many hadrons bunches. For 
example RHIC (and future eRHIC) operate with 120 hadron bunches. Fig. 6 shows a 
scheme in which one electron beam source can serve a number of space charge 
compensators.  

This scheme is especially effective when a low energy electron beam is used moving 
with non-relativistic velocities. In following section we will discuss what can set a limit 
on the minimal length of compensator. 

 

IV. Effects on the electron beam 

It is well known that hadron beam will affect the propagation and dynamic of the 
electron beam. There is a natural desire, driven by economy, of using low-energy electron 
beams. Such beam would be highly susceptible to space charge forces induced by itself 
as well as by the hadron beam. The solution for transporting such beam and accurate 
control of their distribution is well known: the magnetized electron beam transported by a 
solenoidal field [29-40]. Such transport provides both the stability of the electron (and 
therefore, the hadron) beam as well as control of the beam size by changing the value of 
the solenoidal field. The solenoidal field provides the focusing to counteract destructive 
space charge and collective interaction.  

For example, the stability of the interacting electron and hadron beam will be similar 
to that in head-on collisions using electron lens [42-45,40]. As shown in [46], using 
strong longitudinal magnetic field plays important role in maintaining stability of 
interacting electron and hadron beams.  

If solenoidal transport is used, the main limiting factor for the compensator length 
will be a finite radius of curvature of the bends. At each bend, the hadron experiences the 
field from the bent electron beam, which has a different transverse structure from that 
that we are compensating. Thus, the effect of the end-effects has to be controlled and we 
can formulate an addition limitation on the compensator length: 

Lc >> bend radius        

In practice it meant that typical lengths of a compensator should be few meter and not 
few centimeters. 

 

V. Examples.  

Let’s consider a case a hadron beam in eRHIC with γ h = 250, an RMS bunch length 
of σ z =8 cm and the compensator length of 3 m. We assume that that slippage is equal to 

1.5 RMS bunch length, e.g. cΔt = 12cm. Equation (33) yields the optimum βe ≅ 0.961 
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and the optimum electron beam energy of 1.86 MeV (kinetic energy of 1.35 MeV). The 
required electron beam current for a single compensator should be:  

 Ie ≅ −0.51⋅ Ih        (36) 

In high-luminosity eRHIC the expected proton intensity is 3.1011 per bunch and the 
peak proton beam current of ~72 A. Hence, the required e-beam peak current ~ 37 A is 
reasonable. For a γ h = 50 the required e-beam current would grow nearly 12.6-fold to 
about 900 A, making such compensation in a single compensator a very challenging task. 

 

Table 1. Examples of possible space-charge compensator schemes for various mode of 
operating the High-Luminosity eRHIC 

Parameter     

Hadron beam p p 79Au197 79Au197 

Energy, GeV/u  250 100 100 50 

Number of particles 3 1011 3 1011 3 109 3 109 

RMS bunch length, m 0.08 0.08 0.08 0.08 

Norm. emittance, m rad 2 10-7 2 10-7 2 10-7 2 10-7 

ΔQsc 0.05 0.31 0.1 0.40 

Peak current, A 72 72 58 58 

Electron beam     

Compensator length, m 3 3 3 3 

Kinetic Energy, MeV 1.35 1.35 1.35 1.35 

# of compensators 3 12 12 24 

Peak current, A 10.6 16.6 13.1 26 

Total comp. length, m 9 36 36 74 

Hence the length of the compensation section is only 3 m, while each of six eRHIC 
IR straight sections is 200 m long, one can consider multiple compensating sections to 
reduce the required e-beam peak current to tens of amps.  

Compensating space charge effects could also be required for low-energy scan in 
RHIC in search of critical point in the QCD phase-diagram [47-51]. For such scan the 
relativistic γ can be as low as 2.7 [52], but bunch intensity in such operation is 
significantly lower than in eRHIC and the bunch length is much longer [53]. Tables 
below give a sample of hadron beam energies, hadron beam parameters and possible 
parameters for the space-charge compensation.  

Parameters of the compensators presented in the tables are not necessarily optimized 
for the performance or cost. What is important that energy of electron beam required for 
space charge compensation for RHIC’s low energy scan is in ~10 KeV range (this was 
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the reason to quote kinetic energy in the table). This is directly related to use of a long 
bunches with RMS duration of few meters. Long bunches allow a longer slippage, and 
therefore operating e-beams with . This also means electrons are rather 
slow and that loops in Fig. 6 are 4-5 fold shorter than would be required for relativistic 
electrons.  

 

Table 2. Examples of possible space-charge compensator schemes for various mode of 
low energy RHIC operations * 

Parameter     

Hadron beam 79Au197 79Au197 79Au197 79Au197 

Energy, GeV/u  2.5 3.85 5.75 10 

Number of particles 0.5 109 1.1 109 1.1 109 1.1 109 

RMS bunch length, m 3 3 2 2 

Norm. emittance, m rad 1.5 10-6 1.5 10-6 1.5 10-6 1.5 10-6 

ΔQsc 0.10 0.09 0.06 0.075 

Peak current, A 0.25 0.55 0.82 0.83 

Electron beam     

Compensator length, m 1 1 1 1 

Kinetic Energy, keV 8.6 8.6 16.5 16.5 

# of compensators 12 12 12 12 

Peak current, A 2.5 2.4 2.4 0.77 

Total comp. length, m 12 12 12 12 

* Ion beam parameters are taken from [52-53] and we assume that the beam transverse 
emittance is cooled by a factor of 2 [54-55]. 

In contrast, eRHIC will use short bunches of hadrons with RMS length of few 
centimeters. It results is a modest but relativistic energy of electron ~ 1.35 MeV with 
βe ≅ 0.96. 

These simple examples show the capability of this concept to compensate of the 
space charge induced tune spread with reasonable length of the compensator and 
reasonable current of the compensator. 

 

VI. Discussion and Conclusions 

In this paper we presented a novel method of compensating space-charge-induced 
tune spread in bunched hadron beams. We showed that, in principle, it is possible to 
compensate both the tune shift and the tune spread with a significant accuracy. We 
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consider that with a proper design and simulations, up to 99% of the space-charge-
induced tune spread can be compensated. 

It is a natural to ask a question of what would be an ultimate of the space-charge-
induced tune spread, which can be sustained in a storage ring? Unfortunately there is no 
simple direct answer. It is well know that space-charge-induced resonances can make 
hadron beam unstable [56-58]. Thus, the beam dynamics in the presence of the 
compensators should be simulated using appropriate code (see , for example [59-63]). 

One important conclusion of such simulations (for the bunch average tune shift 
compensation [59-62]) is that spreading the compensators around the ring allow to 
achieve (at least in simulation) larger beam intensities. It is a frequently observed 
phenomenon that local compensation for nonlinear effects in beam dynamics, e.g. placing 
the compensation as close as possible to the source, is preferable solution.  

Hence, we believe that having multiple tune spread compensators spread around the 
ring would result in better compensation and beam stability. For example, one can chose 
the strength and the locations of the compensators to eliminate most dangerous resonant 
driving terms. 

In contrast with traditional space-charge compensating schemes, we proposed the 
method of compensating not only the tune shift but also the entire tune spread. We expect 
that this method would allow stabilizing the intense hadron beam in sub-TeV and low 
energy storage rings. Electron beams with required quality, energy and intensity either 
are readily available or considered for future accelerators [64-67] and could be used for 
the proposed space-charge effects compensator.  
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Appendix A. Space charge induced tune spread 

There is a multiple ways of deriving the space-charge tune shift and tune spread for 
relativistic hadron beam. We refer interested reader to specialized papers on the topic 
[68-69] and references therein. There is no practical limit to which one can complicate 
the space charge problem by adding effects of the surrounding environment [70], non-
trivial beam distributions, and of cause, an arbitrary coupling between three degrees of 
freedom. While interesting in general, heavy mathematical calculations could obscure the 
main idea of this paper, e.g. the describing the novel compensation method for the space 
charged induced tune spread. 

Hence, we will focus on a case of uncoupled transverse motion with as simple 
Gaussian transverse and longitudinal density distribution in the bunch propagating in 
vacuum:  

f x, y, s,τ = ct( ) = No

2π( )3/2σ xσ yσ z

exp − x2

2σ x
2 −

y2

2σ y
2 −

s − βoτ( )2

2σ z
2









 ;   (A1) 

where No  is the number of particles in the bunch, β o ≡ 1−γ o
−2( )1/2

= vo / c  is the beam 

longitudinal velocity, τ = ct  and c  is the speed of the light. Trivial Lorentz 
transformation gives us the distribution (A1) in the co-moving frame: 

f x, y,

z( ) = No

2π( )3/2 γ oσ xσ yσ z

exp − x2

2σ x
2 −

y2

2σ y
2 −

z 2

2σ z
2







; 

z = γ o s − βoτ( );  σ z = γ oσ z .

  (A2) 

The charge density ρ  differs from the particle density by the multiplier eZ . It is our 
assumption that in the co-moving frame the scalar potential is nearly time-impendent, e.g. 
it evolves only with the change of the particles distribution. Naturally, since there is no 
current in the co-moving frame, the vector potential from space charge is equal zero. 
Now we just need to solve stationary Poisson equation 7:  

Δϕ 
r( ) = −4πρ 

r( ) . 

Following [71] we can derive the scalar potential using well known equalities [72-73]: 

ϕ 
r( ) =

ρ

ζ( )


r −


ζ

d

ζ 3;  

1

r −


ζ

 ≡ 2

π
exp −u2 r −


ζ

2( )
0

∞

 du    

and rewrite it using q =1/ u2  as: 



ϕ 
r( ) = 1

π
q−3/2ρ


ζ( ) exp −


r −


ζ

2

q











0

∞

 dqd

ζ 3.    

                                                        
7 We assume here that in the co-moving frame speed of the particles is much smaller that the speed of the 
light and the formula for a static scalar potential 4ϕ πρΔ = −  is applicable.  
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Substituting the charge density using the particle distributions (A2): 

ϕ x, y, z( ) = eZ

π
No

2π( )3/2 γ oσ xσ yσ z

dq

q3/2 dξ dηdζ ⋅exp −
x −ξ( )2 + y −η( )2 + z −ζ( )2

q
− ξ 2

2σ x
2 −

η2

2σ y
2 −

ζ 2

2σ z
2











0

∞

 ; 

 (A3) 

and taking three trivial integrals, as indicated below: 

x −ξ( )2

q
+ ξ 2

2σ x
2
= q+ 2σ x

2

2σ x
2q

ξ − x
2σ x

2

q+ 2σ x
2











2

+ x2

q+2σ x
2

;

dξ exp −
x −ξ( )2

q
− ξ 2

2σ x
2













−∞

∞

 =σ x

2πq

q+ 2σ x
2

exp − x2

q+ 2σ x
2









;

 

we arrive to final expression for a scalar potential: 

ϕ x, y, z( ) =ϕo +
eZ

π
No ⋅ dq

exp − x2

q + 2σ x
2 −

y2

q + 2σ y
2 −

z 2

q + 2σ z
2








q + 2σ x
2( ) q + 2σ y

2( ) q + 2σ z
2( )0

∞

 .  (A4) 

Since in the co-moving frame only time-component of the 4-vector potential, e.g. ϕ , 
is non-zero, the Lorenz transformation back into the lab-frame is trivial: 

ϕsc x, y,s,τ( ),

Asc x, y, s,τ( )( )

lab
= γ o 1,βoŝ( ) ⋅ϕ x, y,γ s − βoτ( )( ), (A5) 

where ŝ  is the unit vector along the beam orbit. Eq. (A5) can be directly added into the 
Canonical accelerator Hamiltonian [74-75]:  

h* = − 1+ Kx( ) H − eϕ + eϕsc( )2

c2 − m2c2 − Px −
e

c
Ax







2

− Py −
e

c
Ay







2

− e

c
A2 + Acs( )  (A6)

 

where we assumed a flat ring reference orbit (i.e. absence of the orbit torsion [74]).  

While it is possible to proceed a bit further using the Hamiltonian (A6), for most 
practical cases we can use significant simplifications. First, in all practical hadron storage 
rings the bunch length is significantly larger compared with the transverse beam sizes, 
e.g. σ z >>σ x,y . For example in eRHIC the hadron beam RMS bunch length will be ~ 50 

mm, while the transverse beam size will be ~ 0.2 mm. With further σ z =γoσ z  boost in the 

co-moving frame this size asymmetry becomes overwhelming, e.g.  

σ z >>>σ x,y . 
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In eRHIC case we would have σ z /σ x,y >104 . This asymmetry allows using a two-

dimensional expression for the scalar potential. The easiest way is using σ z
2 →∞ limit in 

(A4),  but it can be also done directly [76] 8:  

ϕ x, y, z( ) = eZNo

2πσ z

e
− z 2

2σ z
2

⋅ dq

exp − x2

q + 2σ x
2 −

y2

q + 2σ y
2








q + 2σ x
2( ) q + 2σ y

2( )0

∞

 .  (A7) 

Using substitutions  u s( ) =σ x s( ) /σ y s( )  and q = 2ϑσ xσ y . Eq. (A7) can be rewritten with 

a dimensionless integral: 

ϕ x, y, z( ) = eZNo

2πσ z

e
− z 2

2σ z
2

⋅ dϑ
exp − x2 /σ x

2

2 1+ϑ / u( ) −
y2 /σ y

2

2 1+ϑu( )







1+ϑ / u( ) 1+ϑu( )0

∞

 ;  (A8) 

The near-the-axis expansion of eq. (A7) can be found written in analytical form using an 

identity a a+ b( ) dq / q+ 2a2( )3
q+ 2b2( )

0

∞

 =1: 

                                                        
8  There is a direct way of doing deriving (A7) following [76]. By applying a Fourier transform 

..exp

k

r( ) dxdy / (2π )2

 
to Δ⊥ϕ ≈ −4πρ;    for σ z >>σ x,y  we attain . 

Using familiar trick 
1
k 2

= e−

k 2t

0

∞

 dt ≡ 1

4
e
−

k 2t

4

0

∞

 dt  and scaling it by 1/4th one gets: 

 

Then for a long bunch Gaussian bunch with linear density of ρo z( ) = eZN ⋅e
− z 2

2σ z
2

/ 2πσ z( ) ⋅  

ρ = ρo z( ) 1

2πσ xσ y

e
− x2

2σ x
2 −

y2

2σ y
2

;    ρ k( ) = 1

2π( )2 ⋅ e
− kx

2σ x
2

2
−

ky
2σ y

2

2 ;    

after trivial integration  


ϕ 

r( ) = πρo z( ) 1

2π( )2 ⋅ dt e− i

k

re

− kx
2σ x

2

2
−

ky
2σ y

2

2 e
−

k 2t

4 dkx dky;
0

∞

 e− ikxxe
−

kx
2 2σ x

2+t( )
4 dx

−∞

∞

 = 4π
2σ x

2 + t
e
− x2

2σ x
2+t ;  

we get the  desirable result identical to (A7):  

ϕ 
r( ) = eZN

2πσ z

e
− z2

2σ z
2

⋅
e
− x2

2σ x
2+t

− y2

2σ y
2+t

2σ x
2 + t( ) 2σ y

2 + t( )
dt

0

∞

 . 
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ϕ x, y, z( ) = ϕo(z)− eZNo

2πσ z

e
− z 2

2σ z
2

⋅ 1

σ x +σ y

x2

σ x

+ y2

σ y







+O4

ϕo(z) = eZNo

2πσ z

e
− z 2

2σ z
2

⋅ dq

q + 2σ x
2( ) q + 2σ y

2( )0

∞


.  (A9) 

Next useful approximation, which very common in accelerator literature originates 
from the fact that synchrotron oscillations in hadron rings are much slower compared 
with the transverse (betatron) oscillation. It allows on to consider both the longitudinal 
position of particle inside the bunch as well it relative energy deviation, δ ≡ E / Eo −1, as 

slow varying. In this approximation the transverse accelerator Hamiltonian (with 
dimensionless variables px,y → px,y / po ) becomes [74, 75]: 

 
h = − 1+ Kx( ) 1+ 2

βo

δ − Ze

poc
ϕ sc






+ δ − Ze

poc
ϕsc







2

− px
2 − py

22 − Ze

pc
As + Asc( );

ϕ sc x, y,s,τ( ),

Asc x, y, s,τ( )( )

lab
= γ o 1,+βoŝ( ) ⋅ϕ x, y,γ s − βoτ( )( );

  (A10) 

where K  is the curvature of the reference orbit.  

Assuming that space charge can be treated locally as a perturbation (e.g. 

ΔQsc x,y <<Qx,y), we can expand the Hamiltonian keeping only dominant space charge 

term.  Using (A5) and taking into account that γo(1−β0
2 ) =γ −1

o  we get: 

h = ho + Δ hsc ≅ − 1+ Kx( ) 1+ 2δ
βo

+δ 2 − p⊥
2 − Ze

pc
As +

1+ Kx

1+δ / βo








⋅ Ze

βoγ o poc
ϕ x, y,γ s − βoτ( )( ).  

(A11) 

Since we are interested in the main space charge effects, keeping the term in angular 
brackets is unnecessary9.  

                                                        
9 The multiplier 1/(1+δ / βo ) describing the chromaticity of the space charge effects and can be 

estimated as σδ ⋅ΔQsc ~ 10−3ΔQsc , while the multiplier 1+Kx  represents the lengthening of the 

trajectory and can be estimated as αcσδ ⋅ΔQsc ~ 10−3ΔQsc /γ t
2 , where γ t is the relativistic factor at 

transition energy. Typically γ t ~ Qx >>1. More accurate treatment requires averaging perturbation of the 

Hamiltonian over the phases of the betatron oscillations and integrating it over the ring circumference, C. It 
gives us an effective one-turn variation of average Hamiltonian [75]: 

Δ hsc =
1+Kx

βo +δ
⋅ e

γo poc
ϕ x, y, z( );    hcs Ix, Iy, z,δ( ) = e

γo poc

1

βo +δ
ds 1+Kx( ) ⋅ϕ x, y, z( ) φx ,y

0

C

 ;

x = 2βx (s)Ix cos ψx (s)+φx( ) +Dxδ; y = 2βy (s)Iy cos ψy (s)+φy( )
 

where Ix, Iy   are the actions of the betatron oscillations, δ  is the relative energy deviation of the hadron 

and βx,y  are the lattice –functions. The action dependent tune shift than can be calculated as: 
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In (A11) the third term represents space charge effects:  


Δ hsc =

1

β 2
oγ

3
o

Z 2Norc

2πσ z

e
−

s−βoτ( )2
2σ z

2

⋅ dϑ
exp − x2 /σ x

2

2 1+ϑ / u( ) −
y2 /σ y

2

2 1+ϑu( )







1+ϑ / u( ) 1+ϑu( )0

∞

 ;  (A12) 

where rc = e2 / mc2  is the classical particle’s radius. Since we are using Ze  as the charge 

the hadrons, we should also introduce the hadron’s mass number A = m / mp  (with A >1 

for ions), where mp  is the mass of the proton: rc = rp / A; rp = e2 / mpc
2 . 

Near the axis expansion of eq. (A12) is straightforward using (A9): 

Δ hsc L = − 1

β 2
oγ

3
o

Z 2Norp

A 2πσ z

e
−

s−βoτ( )2
2σ z

2 x2

σ x σ x +σ y( ) +
y2

σ y σ x +σ y( )








 . (A13) 

The classical averaging method10 over the fast betatron oscillations [74, 75] 

 

 

 (A14) 

where Ix,y  and φx,y are the actions and phases of the betatron oscillations, allows to find 

local variation of the betatron phases as derivatives over the corresponding action: 

 dφx,y

ds
=
∂Δhsc Ix, Iy, s( )

∂Ix,y

.       

Then the tune shifts is a simple integral over the ring circumference:  

 ΔQsc x,y =
1

2π
ds

∂Δhsc Ix, Iy, s( )
∂Ix,yo

C

 .    (A15)                                                                                                                                                                      
 ΔQsc x,y =

1

2π
∂hcs Ix, Iy, z,δ( )

∂Ix,y
.      

This formula covers all aspects of the space-charge tune shift, including its chromaticity. For on energy 
particles δ = 0: 

 
hcs Ix, Iy, z( ) = ds

1+Kx

γoβo

⋅ e

poc
ϕ x, y, z( )

φx ,y
0

C

 ;

x = 2βx (s)Ix cos ψx (s)+φx( );  y = 2βy (s)Iy cos ψy (s)+φy( ).
    

Since the potential is symmetric functions ϕ −x, y, z( ) =ϕ x, y, z( ) , and  

xϕ x, y, z( ) ≡ 0 . 

Hence, the relative strength of neglected terms would be ~ 10-3. 

10 With averaging over the phases of the betatron oscillations defined as 2π( )2
f

φx ,φy
≡ f

0

2π


0

2π

 dφxdφy  
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Averaging (A12) over betatron phases is straightforward using a well-known expression: 

 F ξ( ) = e−2ξ cos2ψ

ψ
≡ 1

2π
dψe−2ξ cos2ψ = e−ξ

o

2π

 ⋅ Io ξ( )    (A16) 

where Io ξ( )  is the modified Bessel function of first kind [73]. Expressing the beam sizes 

through the lattice functions βx,y  and geometric emittances ε 11, transverse dispersion D  

and the RMS energy spread σδ : 

σ x
2  s( ) = βx s( )ε x + Dx

2 s( )σδ
2; σ y

2  s( ) = βy s( )ε y;  (A17) 

and using eq. (A16) we get:  

Δ hsc ϕx ,y

= 1

β 2
oγ

3
o

Z 2Norc

2πσ z

e
−

s−βoτ( )2
2σ z

2

⋅ dϑ

exp − 2βx Ix cos2ϕx

2 1+ϑ / u( )σ x
2  







ϕx

exp −
2βyIy cos2ϕy

2 1+ϑ / u( )σ y
2  







ϕy

1+ϑ / u( ) 1+ϑu( )0

∞


 

and  

Δhsc φx ,φy
= 1

β 2
oγ

3
o

Z 2Norp

A 2πσ z

e
−

s−βoτ( )2
2σ z

2

dϑ
F

Ax
2 ⋅ fE

2 1+ϑ / u( )






F

Ay
2

2 1+ϑu( )







1+ϑ / u( ) 1+ϑu( )0

∞

 ;  (A18) 

where we introduced new parameters:  

Ax.y
2 ≡

Ix ,y

ε x,y

;  fE s( ) = βx s( )ε x

βx s( )ε x + Dx
2 s( )σδ

2 ≡ βx (s)Ix

σ x
2Ax

2
  (A19) 

As seen from eq. (A18), the tune shifts depend on the horizontal and vertical actions as 
well as on the longitudinal position s−βoτ  inside the bunch. Averaging eq. (A13) over 

the betatron phases, one gets the Hamiltonian of the linear motion: 

Δ hsc = − 1

β 2
oγ

3
o

Z 2Norp

A 2πσ z

e
−

s−βoτ( )2
2σ z

2 2βx (s)Ix cos2 ψ x (s)+φx( )
σ x σ x +σ y( ) +

y2

σ y σ x +σ y( )








  

and  

ΔhscL = − 1

β 2
oγ

3
o

Z 2Norp

A 2πσ z

e
−

s−βoτ( )2
2σ z

2 1

σ x (s)+σ y (s)

βx (s)Ix

σ x (s)
+
βy (s)Iy

σ y (s)







. (A20) 

We define the average of a periodic function 12 g s( ) = g s+C( )  as:                                                         
11 With normalized emittances defined as εn ≡γoβoε .  
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g
C
≡ 1

C
g s( )ds

o

C

 .    (A21) 

Using (A15) and (A20) we obtain the tune shifts experienced by particles near the axis 
then given by: 

δQx =
C

2π
∂
∂Ix

Δhsc

C

= − C

2π
1

β 2
oγ

3
o

Z 2Norp

A 2πσ z

e
−

s−βoτ( )2
2σ z

2 1

σ x (s)+σ y (s)

βx (s)

σ x (s)
C

= − C

4π
1

ε xβ
2
oγ

3
o

Z 2Norp

A 2πσ z

e
−

s−βoτ( )2
2σ z

2 2 fE s( )
1+ 1

u C

 

to get 

δQx = −Qx
sc ⋅e

−
s−βoτ( )2

2σ z
2 2βx (s)ε x

σ x (s) σ x (s)+σ y(s)( )
C

= −Qx
sc ⋅e

−
s−βoτ( )2

2σ z
2 2 fE s( )u s( )

1+ u s( )
C

δQy = −Qy
sc ⋅e

−
s−βoτ( )2

2σ z
2 2βy (s)ε y

σ y (s) σ x (s)+σ y (s)( )
C

= −Qy
sc ⋅e

−
s−βoτ( )2

2σ z
2 2

1+ u s( )
C

.   (A22) 

where we introduce an approximate values for space-charge-induced tune spreads as: 

Qx,y
sc =

C

4πβ 2
oγ

3
oεx,y

Z 2Norp

A 2πσ z

.    (A23) 

Similarly, using (A15) and (A18-A19) we obtain the tune shifts for arbitrary amplitudes 
of betatron oscillations: 

ΔQsc x = Qx
sc e

−
s−βoτ( )2

2σ z
2

⋅ dϑ fE

′F
Ax

2 ⋅ fE

2 1+ϑ / u( )






F

Ay
2

2 1+ϑu( )







1+ϑ / u( )3
1+ϑu( )

C

0

∞

 ; 

ΔQsc y = Qy
sc e

−
s−βoτ( )2

2σ z
2

⋅ dϑ
F

Ax
2 ⋅ fE

2 1+ϑ / u( )






′F

Ay
2

2 1+ϑu( )







1+ϑ / u( ) 1+ϑu( )3

C

0

∞

 ;

  (A24) 

                                                                                                                                                                     
12 Note that lattice functions βx,y s+C( ) = βx,y s( )  are periodic function of the ring 

circumference, ψx,y (s+C) =ψx,y (s)+ 2πQx,y  while betatron phases are monotonically 

growing functions. 
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with ′F ξ( ) = dF ξ( )
dξ

= e-ξ I1 ξ( ) −  Io ξ( )( ) . Plot in Fig. A1 shows F A2( )  and − ′F A2( )  as 

functions of A  (e.g. for q=0, A is in the units the RMS beam size). The behavior of the 
kernel in integral (A24), ′F F , indicate that the tune shifts diminish for particles with 
large oscillating amplitudes, e.g. ΔQsc x− > 0when Ix,y →∞. It also indicates that the tune 

spread for particles confined within Ax,y ≤ 5 is close to that of the maximum shown in eq. 

(A22).  

 

 

Fig. A1. Plots of F A2( )  (red) and − ′F A2( )  (blue) as function of A (horizontal axis).  

For further use in the paper we re-write expressions for the tune shifts as: 

  ΔQsc x,y = −Qsc
x,y ⋅e

−
s−βoτ( )2

2σ z
2

⋅ ffx.y

Ix

εx

,
Iy

εy









;

ffx Ax
2, Ay

2( ) = − dϑ fE

′F
Ax

2 ⋅ fE

2 1+ϑ / u( )








F

Ay
2

2 1+ϑu( )










1+ϑ / u( )3
1+ϑu( )

C

0

∞

 ;  

ffy Ax
2, Ay

2( ) = − dϑ
F

Ax
2 ⋅ fE

2 1+ϑ / u( )








 ′F

Ay
2

2 1+ϑu( )










1+ϑ / u( ) 1+ϑu( )3

C

0

∞

 .

  (A25) 

We want to note that both ffx  and ffy , while being a smooth functions of Ix,y , are neither 

a simple exponential or can be expressed as a well-known functions. It means that in 
practice they should be calculated (tabulated) for a specific storage ring. 
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Finally, let us note that if the contribution of the energy spread term in (A17) is 
negligible, i.e.  

σβx,y s( )εx,y >> Dx,y
2 s( )σδ

2,  

then both (A24) and (A25) can be reduced to a “symmetrically looking” expressions with 
fE =1. Further, for a round beam with equal transverse emittances εx =εy =ε  we can 

write eq. (A22) as: 

δQx = −Qsc e
−

s−βoτ( )2

2σ z
2

2 1+
βy (s)

βx (s)











−1

C

δQy = −Qsc e
−

s−βoτ( )2

2σ z
2

2 1+ βx (s)

βy (s)











−1

C

.  (A26) 

with expressions  

Qsc =
C

4πβ 2
oγ

3
oε

Z 2Norp

A 2πσ z

;    (A28) 

frequently used as an estimate for tune spread induced by space charge in hadron storage 
rings.  

To connect the particle’s distribution with the beam current, we should note that  

 

I s,τ( ) = Î exp −
s − βoτ( )2

2σ z
2









 ≡ Î exp −

s / vo − t( )2

2σ t
2









 ;

Î ≡ eZNovo

2π( )1/2σ z

;  σ t =
σ z

vo

;

f x, y, s,τ = ct( ) = Î

2πσ xσ yZevo

exp − x2

2σ x
2 −

y2

2σ y
2 −

s − βoτ( )2

2σ z
2









 ; 

  (A29) 

where Î  is the beam’s peak current. This allows rewriting eq. (A23) as 

Qx,y
sc =

C

4πβ 3
oγ

3
oεx,y

Z

A

Î

IpA

; IpA =
mpc

3

e
≡ ec

rp

≅ 31.3⋅106  A ,  (A30) 

where I pA  is Alfven current redefined for protons. 

 

Appendix B. Transverse distribution of the electron beam 

We are proposing using a low energy electron beam to compensate the space charge 
tune shift of hadron beam with much higher energy with a similar beam size and peak 
currents. Hence, the focusing effect of the hadron beam on the electron beam will be 
much stronger and, most likely, will lead to pinching of the electron beam. The result of 
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such interaction will be neither desirable nor controllable. There is a practical way of 
keeping electron beam transverse distribution controllable and fixed [26] – the 
propagating of magnetized beam in a strong solenoid field [77-78]. In this case, with an 
appropriately chosen strength of the solenoid, the electron beam profile can be both 
maintained and controlled. 

Similarly to the arguments used for calculating the EM field induced by the hadron 
beam, we can conclude that the 4-potential induced by the electron beam is given by (A5) 
with the change of the kinematic variables:  

 

ϕe x, y, z,τ( ),

Ae x, y,z,τ( )( )

lab
= γ e 1,βeŝ( ) ⋅ϕe x, y,γ e z − βeτ( )( )  (B1) 

 

with the scalar potential  satisfying the reduced Poison equation in the e-beam co-

moving frame: 

Δ⊥ϕe


r⊥ , z( ) = −4πρe


r⊥ , z( ) .   (B2) 

 

As we discussed in the paper, the convolution of the longitudinal profile of the 
electron bunch has to fit that of the hadron bunch, while the transverse profile should be 
the same, e.g.  

ρe


r⊥ , z( ) = ρe⊥


r⊥( ) ⋅g z( ); ϕe


r⊥ , z( ) =ϕee⊥


r⊥( ) ⋅g z( );

γ eg z( ) = g z − βeτ( ); Δ⊥ϕe⊥

r⊥( ) = −4πρe⊥


r⊥( ).

.  (B3) 

 

To satisfy the requirement for a desirable  one has to “simply” provide a beam 

with transverse density distribution satisfying  

ρe⊥

r⊥( ) = −

Δ⊥ϕe⊥

r⊥( )

4π
.    (B4) 

It is easy to see that negatively charged beam is needed to compensate for the space 
charge of a positively charged particles, e.g. we know the sign of . But while 

looking as a simple mathematics (i.e. double differentiation of a given function), one 
should take into account that the density should not change the sign, i.e. on potentials 
with (unless the ignored longitudinal part of the Poisson equation become non-negligible 
for some reasons) 

Δ⊥ϕe


r⊥( ) ≥ 0;   ∀r⊥   

are allowed in practice. Unfortunately, this is not the only limitation – generating an 
arbitrary profile of the electron bunch is a non-trivial engineering undertaking. 

While there are practical challenges of generating the desirable transverse profiles 
(especially when the current is modulated) a large diversity of transverse profiles had 

γo →γe;βo →βe

ϕe

ϕe


r⊥( )

ρe < 0
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been generated in practice [77-25]. Hence, we can assume a smooth profile mimicking to 
a significant degree the distribution of a hadron beam can be generated.  

It most likely means that only the main features of the space charge induced tune 
spread can be mimicked by the compensating beam and only partial compensation of the 
tune spread would be possible. The degree of compensation will depend both on the ring 
and the attainable electron beam profile. 

 

Appendix C. Tune shift induced by the e-beam compensator 

Let’s consider an electron beam in a compensating scheme with a known 4-potential 
(see (B1): 

ϕe x, y, s,τ( ),

Ae x, y,s,τ( )( )

lab
= γ e 1,βeŝ( ) ⋅ϕe x, y,γ e s − βeτ( )( )  (C1) 

and according (B2)  

 

ϕe x, y, s,τ( ),

Ae x, y,s,τ( )( )

lab
= γ e 1,βeŝ( ) ⋅ϕe⊥ x, y( ) ⋅g s − βeτ( );

g s( )
−∞

∞

 ds = 1.
. (C2) 

The later can be input into the transverse accelerator Hamiltonian for the hadrons 
(similarly to the procedure in Appendix A) to find how it changes: 

 

 δ he =
Zeγ e

β0 poc
1− βeβ0( )ϕe⊥ x, y( ) ⋅g s − βeτ( ) .    (C2) 

Assuming the symmetry of the electron beam distribution, we can assume that  

ϕe x, y( ) =ϕ x2, y2( )      (C4)  

and we can average the Hamiltonian over the betatron phases to find the effective 
Hamiltonian: 

δhe = Zγ ee

β0 poc
1− βeβ0( ) ϕ 2Ixβx s( )cos2φx ,2Iyβy s( )cos2φy( )

φx ,y

⋅g s − βeτ( ) . (C5) 

The effective Hamiltonian for a hadron traversing the interaction region: 

s = βo ⋅ τ −τ o( ); τ = τ o +
s

βo

;  
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ds δhe

−L /2

L/2

 = Zeγ e

β0
2γ oAmc2 1− βeβ0( ) ×

ds ϕ 2Ixβx s( )cos2φx ,2Iyβy s( )cos2φy( )
φx ,y

⋅g s 1− βe

β0






− βeτ o






−L/2

L/2


. (C5) 

Further evaluation is impossible without specific transverse distribution of electron beam. 
It is natural to assume that it is also Gaussian,  

 

fe x, y, s,τ = ct( ) = Ne

2π( )3/2σ xσ y

exp − x2

2σ x
2 −

y2

2σ y
2







g s − βeτ( );   (C6) 

 

ϕ 
r( ) = −eNeg s − βeτ( ) e

− x2

2σ ex
2+q

− y2

2σ ey
2+q

2σ ex
2 + q( ) 2σ ey

2 + q( )
dq

0

∞

 .

 
and continue with the Hamiltonian variation of  

 

Δhe =
ZNerp

β0
2γ oA

1− βeβ0( ) ⋅g s 1− βe

β0






− βeτ o







× dq

F
βx (s)Ix

q + 2σ x
2







F
βy(s)Iy

q + 2σ y
2








q + 2σ x
2( ) q + 2σ y

2( )0

∞

 ; 

F x( ) = Io x( )e− x;

  (C7) 

 

and the induced integral Hamiltonian is 

 

ΔH = Δhe ds
−L /2

L/2

 =
ZNerp

β0
2γ oA

1− βeβ0( ) ×

dsg s 1− βe

β0






− βeτ o







dq

F
βx (s)Ix

q + 2σ x
2







F
βy (s)Iy

q + 2σ y
2








q + 2σ x
2( ) q + 2σ y

2( )0

∞


−L /2

L /2

 ; 

    (C8) 

and the induced tune shifts are given by following convolutions: 
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ΔQx =
ZNerp

2πβ0
2γ oA

1− βeβ0( ) dsg ξ( ) dqβx

′F
βx Ix

q + 2σ x
2







F
βyIy

q + 2σ y
2








q + 2σ x
2( )3

q + 2σ y
2( )0

∞


−L /2

L /2

 ; 

ΔQx =
ZNerp

2πβ0
2γ oA

1− βeβ0( ) dsg ξ( ) dqβy

F
βx Ix

q + 2σ x
2







′F
βyIy

q + 2σ y
2








q + 2σ x
2( ) q + 2σ y

2( ) 3

0

∞


−L/2

L /2

 ; 

ξ = s 1− βe

β0






− βeτ o.

    

(C9) 

One of possible simplification to (C9) can be done for a case when the electron beam size 
stays constant through the interaction region and βx,y >> L ,e.g. one can use a thin lens 

approximation for the kick. In this approximation the effect of the slippage and the effect 
of the kick are separable: 

ΔQx ≅
ZNerpβx

2πβ0
2γ oA

1− βeβ0( ) G τ( ) dq

′F
βx Ix

q + 2σ x
2







F
βyIy

q + 2σ y
2








q + 2σ x
2( )3

q + 2σ y
2( )0

∞

 ;

ΔQy ≅
ZNerpβy

2πβ0
2γ oA

1− βeβ0( ) G τ( ) dq

F
βx Ix

q + 2σ x
2







′F
βyIy

q + 2σ y
2








q + 2σ x
2( ) q + 2σ y

2( )3
0

∞

 ; 

G τ( ) = dsg 1− βe

β0







s − βeτ





−L /2

L /2

 ;  βx ,y =
1

L
βx ,y(s)ds.

−L /2

L/2



   (C10) 

The idea of the method is that G τ( ) approximates the longitudinal shape of the hadron 

beam. Than the goal of the transverse shaping and choosing appropriate βx,y  and electron 

beam intensity and the sizes is to approximate the tune shift values induced by the space 
charge effects and their dependence on the transverse actions. These assumptions set 
already familiar requirements: 

G τ( ) = e
−

s−βoτ( )2

2σ z
2

; Ne = ZNo

γ 2
o 1−βeβ0( )

C

2πσ z

.   (C11) 

 

Appendix D. Deconvolution. 

Before starting the derivation for deconvolving eq. (22) , let us list our assumptions: 

1. By definition, Δz = cΔt >0; 
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2. We assume that the hadron beam longitudinal distribution function, q(z), is an 
analytical function, with finite integral and values diminishing at infinity; 

3. Furthermore, we assume that at large distances its derivative also vanishes faster 

that 1 / z , e.g. that ′q (z) < A / z
1+ε

, ε > 0 . This rather weak assumption will be 

used for proving the convergence of the convolution. 

To de-convolve the equation (22), let’s rewrite it in following form: 

g z +ζ( )
0

Δz

 dζ = q(z)



g ζ( )
z

z+Δz

 dζ = q(z);

 .     (D1) 

Taking derivative we get finite step differential equation on g : 

g z + Δz( ) − g z( ) = ′q (z),    (D2) 

which can be solved by turning the finite series 

′q (z + mΔz)
m=0

n

 = g z + (m +1)Δz( )
m=0

n

 − g z + mΔz( )
m=0

n

 = g z + mΔz( )
m=1

n+1

 − g z + mΔz( )
m=0

n

 ;

′q (z + mΔz)
m=0

n

 = g z + (n +1)Δz( ) − g z( )
(D3) 

assuming that g(z)z→∞ → 0  we can derive the result: 

g+ z( ) = − ′q (z + mΔz)
m=0

∞

  ,    (D4) 

We naturally assume that the sum ′q (z + mΔz)
m=0

∞

  converges, i.e. that the derivative to 

distribution function at large values falls faster than A / z
1+ε

, ε > 0 .  Similarly, using 

′q (z − mΔz)
m=1

n+1

 = g z − mΔz( )
m=0

n

 − g z − mΔz( )
m=1

n+1

 = g z( ) − g z − (n +1)Δz( ) ,  (D5) 

and assuming that g(z)z→−∞ → 0 we can derive the second result: 

g− z( ) = + ′q (z − mΔz)
m=1

∞

 .    (D6) 

Function g−  in (D6) is not necessarily identical to g+  in (D4) since the function g(z)  
is not unique. Adding any periodical function with period Δz  and a zero integral: 
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g1 z( ) = g z( ) + p(z);

p(z + Δz) = p(z); p(z)dz = 0;
0

Δz


    (D7) 

does not change the property the is satisfy the convolution equation. But it definitely 
violates natural requirement that g(z)z→±∞ → 0 , e.g. the electron bunch length is finite. 

By observing (D4) and (D6) one can conclude that for a properly behaving distribution 
function  

′q (z) < A / z
1+ε

, ε > 0    (D8) 

 

g+ z( )z→+∞ − > 0 and g− z( )z→−∞ − > 0. It is rather easy to prove considering z > 0: 

g+ z > 0( ) < ′q (z + mΔz)
m=0

∞

 < A z + mΔz
− 1+ε( )

m=0

∞

 < A mΔz
− 1+ε( )

m=M

∞

 = A

Δz1+ε
1

m1+ε
m=M

∞

 ;

M = Floor
z

Δz





> z − Δz

Δz
;

1

m1+ε
m=M

2 M −1

 < 1

M 1+ε
m=M

2 M −1

 = 1

M ε ;
1

2M( )1+εm=2 M

4 M −1

 < 1

2M( )ε
→ 1

m1+ε
m=M

∞

 ≤ 1

M ε
1

2ε( )n
n=0

∞

 = 1

M ε
2ε

2ε −1
;

g+ z > 0( ) < A

Δz1+ε
1

M ε
2ε

2ε −1
< A

Δz1

1

z − Δz( )ε
2ε

2ε −1
;

 

with the later expression definitely showing that g+ z( )z→+∞ − > 0 . Proving 

g− z( )z→−∞ − > 0  is identical in the logic with the given above prove, but for z < 0 

replacing M to M = Floor − z

Δz





> − z + Δz

Δz
. 

While at some values of Δz  g−  can be identical to g+ , there are clear physics 
examples of where they can diverge. For example, lets consider a bell-shaped q(z) with 
its entire span falling within Δz , i.e. q(±Δz / 2) = 0 . In practice such distributions exist, 
for example a bunch in a single RF bucket. It means that  

′q (z)dz
−Δz/2

Δz/2

 = 0; ′q ± Δz

2





= 0 . 

At the same time ′q (z) has at least one maximum and one minimum with an interval 

−Δz / 2,Δz / 2{ } . Let’s mark these ′q (z)  extrema locations as 



 32

z+ (maximum, z+ < 0), z− (minimum, z− > 0). Then for an arbitrary positive m we have: 

g+ z( ) = − ′q (z + mΔz)
m=0

∞

 , g− z( ) = + ′q (z − mΔz)
m=1

∞

 : 

g+ z+ − mΔz( ) = − ′q (z+ ) < 0

g+ z− − mΔz( ) = − ′q (z− ) > 0

g− z+ + mΔz( ) = ′q (z+ ) > 0

g− z− + mΔz( ) = ′q (z− ) < 0

 ,     (D9) 

i.e. the oscillating nature of the g+  at negative values and g−  at positive values of 
argument. Furthermore,  

 

g+ z( ) = 0; z > Δz / 2

g+ z( ) = − ′q (Δzmod(z / Δz +1 / 2)− Δz / 2), z < Δz / 2

g− z( ) = 0; z < Δz / 2

g− z( ) = ′q (Δz mod(z / Δz +1 / 2)− Δz / 2), z > Δz / 2

g+ z( ) − g− z( ) = − ′q (Δzmod(z / Δz +1/ 2)− Δz / 2)

 ,   (D9) 

with the difference being a periodic function with zero-value integral. The Fig. D1 below 
shows this behavior for a Gaussian q(z)  as function of the delay. 

Since eq. (22) is linear, any combination of  

 

gα t( ) = αg+ t( ) + 1−α( )g− t( )  
is a deconvolution of the eq. (22). For practical application the mostly interesting is the 
an even sum of both,  

2g1/2 (z) = g+ z( ) + g− z( ) = ′q (z − mΔz)
m=1

∞

 − ′q (z + mΔz)
m=0

∞



2g1/2 z + Δz

2





= ′q z − mΔz + Δz

2






m=1

∞

 − ′q z + mΔz + Δz

2






m=0

∞



′q z + mΔz + Δz

2






m=0

∞

 = ′q z + mΔz − Δz

2






m=1

∞



2g1/2 z + Δz

2





= ′q z − m − 1

2





Δz






− ′q z + m − 1

2





Δz











m=1

∞
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Fig. D1. 3D-plot of τ ⋅ g+ t( ) − g− t( )( )  (vertical axis) for Gaussian convolution function 

with t = z /σ z ∈ −5,5( )  being a horizontal axis, and the third axis isτ = Δz /σ z ∈{0,3} 

(see eqs. (D4), (D6)). 

 

Hence, we can define a “symmetric-form” function as 

G(z) = g z + Δz

2





= 1

2
′q z − m − 1

2





Δz






− ′q z + m − 1

2





Δz











m=1

∞

  (D10) 

with easy prove  

d
z−Δz

2

z+Δz

2

 z1 ′q z1 − m − 1

2





Δz






− ′q z1 + m − 1

2





Δz













m=1

∞

 =
q z + Δz − mΔz( ) − q z + mΔz( )
−q z − mΔz( ) + q z − Δz + mΔz( )










m=1

∞



== q z − mΔz( )
m=0

∞

 − q z + mΔz( ) − q z − mΔz( )
m=1

∞

 + q z + mΔz( )
m=0

∞


m=1

∞








= 2q z( )

 

that 

G ζ( )
z−Δz/2

z+Δz/2

 dζ = q(z) .     (D11) 

If is q(−z) = q(z)

 

symmetric, then  
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′q (z) = − ′q (−z)→ ′q z − m − 1

2





Δz






= − ′q m − 1

2





Δz − z







′q z + m − 1

2





Δz






≡ ′q m − 1

2





Δz + z







 

and G(z) can be rewritten inform which is obviously symmetric terms: 

G(z) = − 1

2
′q m − 1

2





Δz − z






+ ′q m − 1

2





Δz + z











m=1

∞


 

 (D12) 

which is easy to prove: 

v(z) = ′q a − z( ) + ′q a + z( );
v(−z) = ′q a + z( ) + ′q a − z( ) ≡ v(z)

.    

Let’s consider a practical case with: 

q(z) = exp − z2

2σ 2







;     (D13) 

we have  

g+ z( ) = 1

σ 2 (z + nΔz) ⋅exp − (z + nΔz)2

2σ 2





n=0

∞

  .   (D14) 

It is obvious that the behavior of the g z( ) defined by τ = Δz

σ
: 

g+ t( ) = 1

σ
(t + nτ ) ⋅exp − (t + nτ )2

2





n=0

∞



t = z

σ
;τ = Δz

σ

 .   (D15) 

Fig. D2 shows the value of g± t( )  as functions of t ∈ −5,5( )  and τ ∈{0,3} . It is 

possible to see that for values of τ ∈{0,1} the functions g± t( )  remain positive. Fig. D3 

shows details of g± t( )  the τ = 1,2,3. It is obvious that for τ > 2  it is impossible to make 

g t( ) > 0  approximating the required function. But it is also obvious that τ ≤1.5  eqs. 

(D4) and (D6) generate a smooth positive function, which can be, in principle, 
reproduced by a e-beam profile.  

Figs. 3-5 in Chapter III also show that one can use τ ≤1.5  for generating smooth 
positive functions closely approximating the required forms. As shown in Fig. D4, the 
g+ t( )  for τ = 1.5  get into a small negative values at t < −3. Detailed studies show that it 

becomes an oscillating sin-like function with amplitude about 1.5 10-3 with period of 
T ~ 1.5 . Simply cutting this tail at t < −3 makes a practically attainable positive function, 
whose convolution deviates from (22) by a small fraction ~ 7 10-4. 
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(a)      (b) 

  

 

Fig. D2. 3D-plots of g+ t( )  (top) and g− t( ) (bottom) as functions of t ∈ −5,5( )  and 

parameterτ ∈{0,3}. The clipping shows the area where function becomes negative. 

(a)      (b) 

   

Fig. D3. Plot of τ ⋅g± t( )  (g+ is on left and g- is on the right) as functions of t ∈ −5,5( ) 
and for τ =1,2,3.  

 

Fig. D4. 3D-plot of τg+ t( )  as function of t ∈ −5,5( ) and for τ = 1.5 .  
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As shown in Fig. D5, it is even possible to use τ = 2 and smooth function to 
compensate more than 95% of the tune spread induced by the space charge. While this 
can be considered, using τ ≤1.5  is preferable for accurate space charge compensation.  

(a)      (b) 

 

   

Fig. D5. (a) a plot of g+ t( )  for τ = 2  (blue) and a fit of a positive function (magenta), (b) 

shows a residual tune shift as a function of the position within a hadron bunch, when a 
fitted function is used to compensate the space charge. 

 

References 

[1] “High-energy high-luminosity electron-ion collider eRHIC”, V. N. Litvinenko et al., 
In: The EIC Science case: a report on the Joint BNL/INT/JLab program: Gluons and 
the quark sea at high energies: distributions, polarization, tomography, Editors: D. 
Boer, M. Diehl, R. Milner, R. Venugopal, W. Vogelsang, pp. 440-447 (in the paper 
version, BNL-96164-2011, August 2011), pp. 438-443 
http://arxiv.org/pdf/1108.1713v1  

[2] L.J. Laslett, On intensity limitations imposed by transverse space-charge effects in 
circular particle accelerators, Summer Study on Storage Rings, BNL Report, 7535, 
p. 154 (1963), http://lss.fnal.gov/conf/C630610/p324.pdf  

[3] C.E. Nielsen, A.M. Sessler, Longitudinal Space Charge Effects in Particle 
Accelerators, Review of Scientific Instruments, v. 30-2, p.80 1959 

[4] S. Machida, Nuclear Instruments and Methods in Physics Research Section A: 
Accelerators, Spectrometers, Detectors and Associated Equipment, 309, 1 (1991) 
p.43 

[5] S. G. Anderson, J. B. Rosenzweig, G. P. LeSage and J. K. Crane, Phys. Rev. ST 
Accel. Beams 5, 014201 (2002) 

[6] A.V. Fedotov, Proceedings of the 2003 Particle Accelerator Conference, Portland, 
Oregon, USA (2003) p. 383 

[7] B.W. Montague, CERN Report 68-38 (1968). 

[8] I. Hofmann, Phys. Rev E 57, p. 4713 (1998). 



 37

[9] S. Machida, Nucl. Inst. Meth. A384, p.316 (1997). 

[10] I. Hofmann, K. Beckert, Proc. PAC’85, p. 2264 (1985) 

[11] F. Sacherer, LNBL Report UCRL-18454 (1968). 

[12] R.L. Gluckstern, Proc. of LINAC’70, p. 811 (1970). 

[13] I. Hofmann et al., Proc. of EPAC’02 (Paris), p.74 (2002). 

[14] A.V. Fedotov, J. Holmes and R.L. Gluckstern, Phys. Rev.STAB, 4, 084202 (2001). 

[15] J.S. O’Connell et al., Proc. of PAC’03 (Washington D.C.), p. 3657;  

[16] J. Qiang and R.D. Ryne, Phys. Rev. STAB,3, 064201 (2000). 

[17] J. M. Lagniel, Nucl. Inst. Meth. A345, p. 46 and p. 405 (1994);  

[18] A. Riabko et al. , Phys. Rev. E 51, p. 3529 (1995). 

[19] M.S. Livingston, MIT Report 60, p. 154 (1953). 

[20] H. Okamoto, K. Yokoya, Nucl. Inst. Meth., A482, p.51 (2002). 

[21] I. Hofmann et al., Part. Accel., 13, p. 145 (1983). 

[22] J. Struckmeier, M. Reiser, Part. Accel., 14, p.227 (1984). 

[23] Handbook of accelerator physics and engineering, edited by Alex Chao and M. 
Tigner, 2nd Edition, World Scientific Publishing Co., Singapore, 2002, p. 128 

[24] A.V. Burov, G.W. Foster, V.D. Shiltsev, Space-Charge Compensation in High-
Intensity Proton Rings, FERMILAB-TM-2125, September 2000 

[25] A. Shemyakin, et.al, “Performance of a High-Perveance Electron Gun with a 
Convex Cathode”, Proc. EPAC’00, Vienna (2000). 

[26] G. Budker, “Relativistic Stabilized Electron Beam”, CERN Symposium on High 
Energy Accelerators, CERN, Geneva (1956); Sov. Atomnaya Energiya (1979). 

[27] A.V. Burov, V.I. Kudelainen, V.A. Lebedev, V.V. Parkhomchuk, A.A. Sery, and 
V.D. Shiltsev, “Experimental Investigation of an Electron Beam in Compensated 
State”, Preprint INP 89-116, Novosibirsk (1989), Preprint CERN/PS 93-03 (AR), 
CERN, Switzerland (1993). 

[28] V. Shiltsev, A.Valishev, G.Kuznetsov, V.Kamerdzhiev, A.Romanov, Beam Studies 
With Electron Columns, Proceedings of PAC09, Vancouver, BC, Canada (2009) p. 
3233 

[29] S. Nagaitsev, et al., in Proceedings of the Particle Accelerator Conference, New 
York (PAC’99) (IEEE, Piscataway,  NJ, 1999), pp. 521–523;  

[30] S. Nagaitsev et al., in Proceedings of ECOOL99 [Nucl. Instrum. Methods Phys. 
Res., Sect. A 441, 241 (2000)]. 

[31] P. Wesolowski, K. Balewski, R. Brinkmann, Y. Derbenev, and K. Floettmann, Nucl. 
Instrum. Methods Phys. Res., Sect. A 441, 281 (2000). 

[32] N. Dikansky et al., Part. Accel. 7, 197 (1976). 



 38

[33] N. Dikansky, S. Nagaitsev, and V. Parkhomchuk, Fermilab Report No. FERMILAB-
TM-1998-H, 1996. 

[34] N. Dikansky et al., in Proceedings of the Particle Accelerator Conference, 
Vancouver, Canada, 1997 (PAC’97) (IEEE, Piscataway, NJ, 1997), p. 1795. 

[35] A. Burov, V. Danilov, Ya. Derbenev, and P. Colestock, in Proceedings of ECOOL99 
(Ref. [4]), p. 271. 

[36] Y. Derbenev, in Proceedings of ECOOL99 (Ref. [4]), p. 223. 

[37] D. Kehne, K. Low, M. Reiser, T. Shea, C.R. Chang, Y. Chen, Nucl. Instrum. 
Methods Phys. Res., Sect. A 278, 194 (1989). 

[38] S. Humphries Jr. and L. K. Len, J. Appl. Phys. 62, 1568 (1987) 

[39] P. Loschialpo, W. Namkung, M. Reiser and J. D. Lawson, J. Appl. Phys. 57, 10 
(1985); http://dx.doi.org/10.1063/1.335382 

[40] W. Fischer et al., Status of the RHIC head-on beam-beam compensation project, in 
Proc.  2011 Particle Accelerator Conference (PAC’11) New York, N.Y. March 28 – 
April 1, 2011 

[41] A. Burov, S. Nagaitsev, A. Shemyakin, Ya. Derbenev, Optical principles of beam 
transport for relativistic electron cooling, PHYSICAL REVIEW SPECIAL TOPICS 
- ACCELERATORS AND BEAMS, VOLUME 3, 094002 (2000)  

[42] V. Shiltsev and D. Finley, FERMILAB-TM-2008, 1997. 

[43] V. Shiltsev, FERMILAB-TM-2031, 1997. 

[44] V. Shiltsev, V. Danilov, D. Finley, and A. Sery, FNAL-Pub- 98/260, 1998. 

[45] V Shiltsev et al 2008 New J. Phys. 10 043042 doi:10.1088/1367-2630/10/4/043042 

[46] A. Burov, V. Danilov, and V. Shiltsev, Transverse beam stability with an “electron 
lens”, Phys. Rev. E 59, 3605 (1999) 

[47] L. Adamczyk et al., Energy Dependence of Moments of Net-Proton Multiplicity 
Distributions at RHIC, Phys. Rev. Lett. 112, 032302 (2014) 

[48] Paul Sorensen et al.,  RHIC Critical Point Search: Assessing STAR’s Capabilities, 
http://arxiv.org/pdf/nucl-ex/0701028v1.pdf  

[49] Evidence of a QCD critical endpoint at RHIC, 
http://marcofrasca.wordpress.com/2011/06/21/evidence-of-a-qcd-critical-endpoint-
at-rhic/  

[50] C. Montag et al., First RHIC Collider Test Operation at 2.5GeV Beam Energy, In 
Proc. IPAC 2013, Shanghai, China, 
http://accelconf.web.cern.ch/AccelConf/IPAC2013/papers/tupfi076.pdf  

[51] G. Odyniec, RHIC Beam Energy Scan Program: Phase I and II, Proceedings of 
Science ( CPOD 2013) 043 

[52] C. Montag and A. Fedotov, RHIC Low Energy Acceleration, , Proceedings of 
Science ( CPOD 2013) 044  



 39

[53] A. Fedotov and M. Blaskiewicz, Potential for luminosity improvement for low-
energy RHIC operations with long bunches, C-A/AP/#449, 2012 

[54] A.V. Fedotov et al., Electron cooling for low-energy RHIC program, Proceedings of 
COOL09 workshop, Lanzhou, China, 
http://accelconf.web.cern.ch/AccelConf/COOL2009/papers/mom2mcio01.pdf 

[55] A.V. Fedotov et al., Bunched Beam Electron Cooler for Low-energy RHIC 
Operation, Proceedings of 25th North American Particle Accelerator Conference 
(NA PAC’13), September 30 - October 4 2013, Pasadena, CA, USA, 
http://jacow.web.psi.ch/conf/pac13/prepress/TUOAA1.PDF  

[56] I. Hofmann, G. Franchetti, O. Boine-Frankenheim, J. Qiang and R. D. Ryne, Space 
charge resonances in two and three dimensional anisotropic beams, Phys. Rev. ST 
Accel. Beams 6, 024202 (2003) 

[57] A.V. Fedotov and I. Hofmann, Phys. Rev. ST Accel. Beams 5, 024202 (2002) 

[58] A.V. Fedotov, J. Holmes, and R. L. Gluckstern, Phys. Rev. ST Accel. Beams 4, 
084202 (2001). 

[59] V. Kapin, Yu.Alexahin, “Space Charge Simulation Using MADX with Account of 
Synchrotron Oscillations”, Proc. RuPAC-2010, Protvino, Oct 27, 2010, pp. 204-206.  

[60] V. Kapin, “Space Charge Simulation Using MADX with Account of Longitudinal 
Motion”, FNAL Beamsdoc- 3582-v2, Apr. 2011. 

[61] M.A. Furman, “Effect of the Space-Charge Force on Tracking at Low Energy”, 
PAC’87, p. 1034, 1987. 

[62] Y.Alexain et al, “Simulation of direct space charge in Booster by using MAD 
program”, Beams-doc-2609, at http://beamdocs.fnal.gov 

[63] M. Aiba et al., in Proceedings of PAC07, Albuquerque, New Mexico, USA (2007)  
p. 3390 

[64] H Pfeffer, G Saewert,  A 6 kV arbitrary waveform generator for the Tevatron lens. 
Fermi Nation Accelerator Laboratory, PO Box 500, Batavia, IL, 60510, U.S.A 
FERMILAB-PUB-11-425-AD 

[65] A. Pikin, private communication  

[66] B.Dunham et al, Appl. Phys. Lett. 102, 034105 (2013); 
http://dx.doi.org/10.1063/1.4789395  

[67] S. Belomestnykh, Status of BNL SRF guns, ERL 2011 Workshop KEK, Tsukuba, 
Japan, October 16-21, 2011, 
http://accelconf.web.cern.ch/AccelConf/ERL2011/talks/wg1001_talk.pdf  

[68] K. Schindl, ‘Space charge’, Proc. Joint US-CERN-Japan-Russia School on Particle 
Accelerators, Beam Measurements, Montreux, May 1998, edited by S. Kurokawa, 
S.Y. Lee, E. Perevedentsev, S. Turner, World Scientific, 1999, pp. 127–151 

[69] R.L. Gluckstern, Scalar Potential for Charge Distributions with Ellipsoidal 
Symmetry, FERMILAB note TM-1402, May 20, 1986, 
http://inspirehep.net/record/231017/files/fermilab-tm-1402.PDF 



 40

[70] L.J. Laslett, “On Intensity Limitations Imposed by Transverse Space-Charge Effects 
in Circular Particle Accelerators”, eConf C630610 (1963) 324, 
http://inspirehep.net/record/48302?ln=en 

[71] K. Takayama, “A New Method for the Potential of a 3-Dimentional Nonuniform 
Charge Distribution”, Lett. Al Nuovo Cimento, vol. 34, N 7 (1982) p.190 

[72] L.D. Landau and E.M. Liftshitz, The Classical Theory of Fields, Pergamon Press, 
New York, 1994 

[73] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions, National 
Bureau of Standards, 1964 

[74] V. N. Litvinenko, Analytical Tools in Accelerator Physics, C-A/AP/406 note, 
September 2010, http://www.cadops.bnl.gov/AP/ap_notes/ap_note_406.pdf  

[75] Selected Notes from the USPAS Winter 2008 Accelerator Physics Course, V.N. 
Litvinenko, September 1, 2010, pp. 1- 116, 
http://uspas.fnal.gov/materials/08UCSC/Accelerator_Physics1.pdf 

[76] S. Kheifets “Potential of a three dimensional Gauss-bunch”, PETRA Note 119 
(1976) 

[77] V. Shiltsev et al., Tevatron Electron Lens,  Phys Rev ST AB 11, 103501 (2008). 

[78] V. Shiltsev,V. Danilov, D. Finley,A. Sery, “Compensation of Beam-Beam Effects in 
the Tevatron, with Electron Beams”, Phys.Rev. ST Accel. Beams, 2, 071001 (1999) 

[79] M. Bassetti and G.A. Erskine, CERN-ISR-TH/80-06, Geneva, March 1980 

 


	85850
	Paper Spapce charge compensation

