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Ion Emittance Growth Due to Focusing Modulation from Slipping 
Electron Bunch 

     Low energy RHIC operation has to be operated at an energy ranging from 4.1γ =  to 10γ = . The energy variation causes the change of revolution frequency. While the rf system for the circulating ion will operate at an exact harmonic of the revolution frequency ( h = 60  for 4.5 MHz rf and h = 360 for 28 MHz rf.), the superconducting rf system for the cooling electron beam does not have a frequency tuning range that is wide enough to cover the required changes of revolution frequency. As a result, electron bunches will sit at different locations along the ion bunch from turn to turn, i.e. the slipping of the electron bunch with respect to the circulating ion bunch. At cooling section, ions see a coherent focusing force due to the electrons’ space charge, which differs from turn to turn due to the slipping. We will try to estimate how this irregular focusing affects the transverse emittance of the ion bunch.       
Time Domain Analysis  Assuming the line charge distribution of the electrons and the ions are Gaussian, their currents can be written as                                       ( ) ( )2
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where  ,e rep
e

rev

f
h

f
=   (4) with ,e repf  being the repetition frequency of the electron beam and revf  is RHIC revolution frequency, i.e. ~78 KHz. The ions sitting at the center of the bunch, i.e. 

0τ = ,  get a kick at its M th  revolution of                                                          1 We consider one circulating ion bunch. 
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Assuming e eT σΔ >> , only the closest electron bunch, with 0n =  ,  has contribution and hence eq. (5) simplifies to  ( ) 2 2
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Fourier Analysis  In order to find out the resonant condition for emittance growth, we Fourier decompose eq. (1) as  
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The average electron current seen by ions is thus                                         ( )
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For 0eν ≠ , taking the leading term of 1/ N  in eq. (29) leads to 
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Hence the resonant condition is 
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Estimation of Required Arriving Time Jitter Level 
 In the presence of arriving time jitter, eq. (13) becomes  ( ) 2
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Hence requiring the action growth time longer than the beam store time (or cooling time) gives the requirement for the current jitter as 
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 . (71) Fig.7 plots the required peak current jitter level as calculated from eq. (71) with parameters given in the caption of fig. 5. As shown in fig. 7, in order to have the local growth time smaller than 1000 seconds, the required peak current jitter level is below 4.3%.  
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 The space charge field from the electron beam in the co-moving frame is  
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