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Introduction 

 
In 1D approximation, the behavior of a Free Electron Laser is determined by the 
dispersion relation[1]: 
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where ( )sD̂  is dispersion function given by 
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≡  is the normalized energy deviation, E  is the energy of an electron, 0E  is the 

nominal energy of the electron beam, ρ  is Pierce parameter, Ĉ  is the normalized 
detuning, pΛ̂  is the space charge parameter, and ( )PF ˆˆ  is the normalized distribution 
function of electron energy deviation1. Studying the analytic behavior of eq. (1) can lead 
to deep insights of the FEL system such as the number of modes that 1D FEL can 
amplify and the frequency range of the amplifications. One approach that has been 
recently under investigation is to consider the mapping of ( )sDss ˆ−→  along a contour 
as shown in fig. 1. It is important to understand the behavior of  ( )sD̂  along the arc of the 
s integration contour in fig. 1 in order to deduce the solution of eq. (1)2. In this note, we 
will derive the asymptotic behavior of ( )sD̂ at ∞→s  for ( ) 0Re >s , i.e. the arc part of 
contour C  in fig.1. 
 
 
Deriving the upper limit of D̂ s( )  

Assuming the distribution function satisfying ( ) 0ˆˆlim
|ˆ|

=
∞→

PF
P

, integration by parts of eq. (2)  

                                                 
1 For the definition of variables, please refer to reference [1]. 
2 Details of the work are under preparation for publication. 



                                  
             Complex s plane                                                    Complex ( ) ( )sDssw ˆ−≡  plane 
                   (a)                                                                                      (b) 
Figure 1 Mapping from s to w(s). The contour C in (a) comprises of two homogenous 

parts, the arc  ;2
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εθεπ arcsinarcsin  and the vertical line 

; ξε is −=  RR <<− ξ   with ∞→R  , with ε > 0  being an arbitrary small positive 
number. 
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P̂+ Ĉ − is( )2 dP̂

                                    (3) 

 
for ( ) 0Re >s . Defining 
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the requirement of ( ) 0Re >s  leads to 
 
                                                                 0sin <θ .                                                            (5)     
 
Inserting (4) into (3) and changing the integration variable to 
  

                                                                   P̂1 ≡
P̂
R

                                                             (6)    

produces 
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where  
                                                             ( ) ( )RPFPF 111

ˆˆˆˆ =  .                                                   (8) 
 
 
Explicitly writing eq. (7) into real and imaginary part and change the integration variable 
to  

                                                             θcos
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12 ++≡
R
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eq. (7) becomes 
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with  
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Taking into account eq. (5) and change the integration variable of (10) to 
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with                                                 

                                            F̂3 x( ) = F̂2 −xsinθ( ) = F̂ − xsinθ + Ĉ
R
+ cosθ
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The amplitude of eq. (13) is given by   
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Noticing the distribution function ( ) ( ) 0ˆˆˆ

3 ≥= PFxF , 12 2 +≤ xx  and  
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we obtain the up-limit of ( )sD  
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 i.e. 
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1. Bounded  ( )PF ˆˆ  
 
If  ( )PF ˆˆ  is bounded, i.e. 
                                                               ( ) max

ˆˆˆ FPF ≤ ,    P̂∀                                             (19)     
eq. (18) becomes                              
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Hence we obtain 
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Taking ε  as the smallest value of ( )sRe  along the contour C  of fig. 1(a) and taking 

2

1||
ε

<s , eq. (21) leads to  
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2.  Bell-shape ( )PF ˆˆ  Falling Faster than Lorentizan Distribution  



 
 
Assuming the distribution function ( )PF ˆˆ  satisfies 
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 and a being the ratio of the maximum of ( )PF ˆˆ  with respect to  ( )PF ˆˆ

0 , i.e. 
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Applying eq. (23) to eq. (18) leads to 
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with 
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Inserting eq. (27) into eq. (26) leads to 
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In the limit of ∞→= sR , eq. (24) becomes 
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for ( ) 0Re >s .  

Let’s consider D̂ s( )  at the arc of the contour C in Fig.1 (a) ,2






 +

⋅=
πθi

eRs  







−<<






+−

RR
εθεπ arcsinarcsin  with ∞→R  and ε > 0  being an arbitrary small 

positive number. From eq. (29) we then can estimate that on the arc 
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Selecting 
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on the entire arc. Since ε > 0 is an arbitrary small positive number, setting ε → 0 proves 
that D̂ s( )− > 0at ∞→s  in the right plane of Re(s) > 0.  
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